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FOREWORD

This volume presents the results of an analytical study
performed from May 18, 1967 through May 17, 1968 on the use of
dynamic scale models to determine launch vehicle characteristics.
The investigation was conducted by the Denver Division of the
Martin Marietta Corporation, Denver, Colorado, for the National
Aeronautics and Space Administration, George C. Marshall Space
flight Center, Huntsville, Alabama, under Contract No., NAS8=21101,

Mr, L, Kiefling was the principal representative for the contract=
ing office. '

Mr. George Morosow was the Program Manager for the Denver
Division and all work was performed under the direction of
Mr, Morosow and Mr, Ivan J. Jaszlics, Principal Investigator.
Significant contributions were provided by C, C. Feng, R. C,
Reuter, Jr, and J. N, Singh. The report was critically reviewed
by Professor L. G. Tulin of the University of Colorado,

Results of an experimental study to confirm some of the
analytical results presented herein are provided in Volume II,
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ABSTRACT

The purpose of this study was to develop modeling technlques
that can be used for launch vehicle and space structure dynamic
simulation when the parameters which define similarity between
prototype and model cannot, due to physical or manufacturing
limitations, be fully satisfied, In practice, all but the largest
models have to make compromises in structural simulation and even
very large models, using direct replica scaling, cannot duplicate
all essential parameters.

During the study it became obvious that there is need for a
comprehensive summary of the scaling techniques applicable to the
design of launch vehicle and space structure models, Thils report,
provides that summary; describes general model scaling methods;
developes basic similarity laws for various structures including
liquid propellants and shell structures. A survey of material and
manufacturing limitations and a summary of the economic aspects
of model construction and testing is included.
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SUMMARY

Results of an analytical study on the use of dynamic scale models
to determine launch vehicle characteristics are presented. The report
is written in a way that permits its use as a general guide for
launch vehicle model scaling and design. )

The dimensional analysis methods required to establish dynamic
model scaling parameters are developed in matrix form and used to
summarize the scaling laws applicable to launch vehicle structures.
Scaling laws are presented for beam-like and shell-like structures.
Visco-elastic effects and coupled structural-liquid slosh effects
are considered. The scaling laws applicable to the simulation of
liquid propellant dynamic phenomena are presented. Some special
distorted modeling techniques for shells are developed and the
necessity of an experimental program to confirm these techniques is
emphasized.

A limited discussion of the scaling requirements for space
structures is presented and the relations for thermal scaling and
scaling of gravity-gradient induced forces are summarized. A test
configuration to simulate the gravity-gradient is discussed. A
detailed theoretical and experimental program to investigate these
and other modeling techniques applicable to large space structures
is recommended.

A summary of the economic aspects of dynamic model design and
construction and a review of past and present launch vehicle dynamic
models are included.
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1. INTRODUCTION

The first decade of space exploration was characterized by the
continual increase in launch vehicle and payload dimensions and, with
this increase, structural frequencies were reduced. Fundamental
bending frequencies of first generation vehicles were on the order
of 10 Hz; Titan and Saturn class vehicles have fundamental bending
frequencies, during the boost phase, of 1 to 2 Hz, The degree of
dynamic interaction between structural vibrations, propellant slosh
and vehicle control systems increased considerably.

Al]l present generation launch vehicle structures are designed,
at least in part, by the dynamic loading conditions that arise during
the pre-launch or during the boost phase. These conditions include
loads due to ground winds, 1lift-off loads, dynamic loads generated
by wind shear or atmospheric turbulence, transonic buffet loads,
staging loads, upper stage engine ignition loads and engine shutdown
transient loads.

The complete evaluation of these loads is only possible through
combined analytical and test efforts. While analysis can predict the
fundamental frequency of most conventional launch vehicle structures
with approximately 3% to 8% accuracy, the risk involved in using only
analytical methods, especially if the structure is complex, is so great
that experimental verification is required. The analytical methods
available for prediction of transonic buffet loads and ground wind-
induced loads are of questionable accuracy at the present time:
the use of test results in conjunction with analytical studies is of
the greatest importance in predicting these aeroelastic loads.

Analytically determined vibration modes of launch vehicle
structures have been verified with full-scale vibration surveys
performed in a manner similar to that developed for aircraft. With
the increase in overall dimensions, this approach has become more and
more expeunsive. Current major United States launch vehicles range
from approximately 120 feet to 320 feet and the suspension of these
vehicles to simulate the free-free end conditions of flight is,
in itself, a major task. The simulation of configuration changes
and various propellant conditions present additional severe restric-
tions. The replacement of the full-scale vibration survey with an
equivalent dynamic scale model test, can offer multi-million dollar

savings in materials, manufacturing time and total test program
time.

One of the first major launch vehicle programs in the United
States where the full-scale vibration survey was replaced by a

MARTIN MARIETTA CORPORATION
DENVER DIVISION



MCR-68-87

model test was the Titan III program funded by the U. S. Air Force.
Several Saturn class dynamic models have since been examined, and it is
probable that most, if not all, of the large launch vehicles of the
future will be vibration tested by the use of dynamic scale models.
Recent research performed at the Langley Research Center of the
National Aeronautics and Space Administration indicates the definite
feasibility and accuracy of this approach.

Model testing is utilized exclusively for aeroelastic tests
but model size is restricted by available wind tunnels.

The purpose of this study is to develop modeling techniques
that can be used for launch vehicle and space structure dynamic
simulation when the parameters which define similarity between
prototype and model cannot, due to physical or manufacturing
limitations, be fully satisfied. 1In practice, all but the largest
models have to make compromises in structural simulation and even
very large models, using direct replica scaling, cannot duplicate
all essential parameters.

During the study it became obvious that there is need for a
comprehensive summary of the scaling techniques applicable to the
design of launch vehicle and space structure models. This report,
provides that summary; describes general model scaling methods;
developes basic similarity laws for various structures including
liquid propellants and shell structures. A survey of material and
manufacturing limitations and a summary of the economic aspects
of model construction and testing is included.

MARTIN MARIETTA CORPORATION
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2, REVIEW OF THE STATE OF THE ART

From the number of problems which have been solved using
scale modeling techniques, the potential and application of this
useful method are obvious., Static and dynamic models are being
used to study structural response of space vehicles ranging from
transportation occurring during ground handling to docking maneuvers
in orbit to lunar and planetary landing. '

A colloquim on the use of models and scaling in shock and
vibration sponsored by the ASME in 1963 treated recent develop-~
ments. These included wave simulation, aerospace vehicles,
materials and elastic and plastic response to transient loading.
A symposium on aercelastic and dynamic modeling technology was
sponsored in 1963 by the Air Force Flight Dynamics Laboratory of
the Research and Technology Division, Air Force Systems Command in
association with the Dynamics and Aeroelasticity panel of the
Aerospace Industries Association, This meeting included papers
on such toplcs as transonic buffeting, ground winds, dissimilar
materials, thermal scaling, support systems and excitation tech-
niques, fuel slosh, fatigue, photoelastic techniques, plus
applications to space vehicles and aircraft.

All of the work on dynamic response of space vehicles is
aimed at answering the same question: What are the dynamic
stresses which we must design the vehicle to withstand? The
current scale modeling technology for studying the various types
of dynamic response.is oriented toward those aspects for which
analytical models are inadequate., The degree of reliance on the
results of scale-model tests often depends on the willingness of
the responsible engineer to rely on the results of analysis.

This "willingness'" is a function of schedule, available funds,
past experience on the problem at hand, program penalties incurred
if he believes analysis and program penalties incurred if analysis
is wrong.

The philosophy of the scale-model test to be run also depends
on this "willingness'". By natural cause and effect, a large
amount of money can be spent to solve a very serious problem
(e.g., the wind-induced oscillations of the Saturn V vehicle or
the POGO oscillations of the Titan II-Gemini). In this context
"solve" means "make sure that the mission does not fail', The
associated requirement on the scale-model test is that, it must

MARTIN MARIETTA CORPORATION
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fill the gap between the lack of confidence in analysis and the
"solution of the problem". Obviously, the range of requirements
is extremely broad. All scale model tests have one thing in
common, however, everyone of them is run to provide the "missing
information" required to "solve the problem." Since the avail-
able knowledge of the problem area and the confidence in the
results of analysis are usually closely correlated, the degree
of similitude which is required in the scale-model test increases
as the analytical model deteriorates,

Three general types of models have been used for predicting
dynamic response of space vehicles. One type is the obvious
geometrically scaled model made of the same material as the
prototype. The second is again geometrically scaled but of a
different material; and the third is a distorted model whereby
one or more of the similitude requirements is not preserved. The
first type of model has been used successfully for tests to
determine static and dynamic stresses, displacements, and strains.
However, the extremely light weight structure of aerospace vehicles
sometimes makes geometric scaling impossible. For example, the
tank wall thickness on one launch vehicle is only 0.005 inch
full scale, On a 10% scale model geometric scaling would require
a wall thickness of 0.0005 inch.

Scale models to predict dynamic response, therefore, often
require departure from geometric scaling and the use of the
different materials for model and prototype.

The structural response problem (static, dynamic, rigid body,
vibrational, buckling, linear, nonlinear, elastic, plastic) can
be formulated in terms of the geometry of the structure (dimensions),
material properties of the structure (linear modulus, nonlinear
modulus, damping, strain rate effects, density, Poisson's ratio),
and forcing function applied to the structure (point loads, and/
or pressure as functions of time), Four basic physical dimen~-
sions describe all of the above. Dimensional analysis formulates
the problem of gaining full scale information from models in terms
of the similitude requirements which when satisfied will result
in reliable scaling laws,

It should be noted that the validity of a scale model test
is measured by whether it provides the information required to
solve the problem. The improvements in the state-of-the-art for
scale~model tests can thus be accomplished in either of two ways:

(1) Development of more sophisticated methods of building
scale models and improving the simulation of the
environments; or

MARTIMN MARIETTA CORPORATION
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(2) 1Improvement of the methods of analysis and understanding
of the physics of the problem, particularly in those
areas which cause the most trouble in the design of
scale-~model tests.

Dynamic models of launch vehicles have had widespread application
to two major areas: vibration surveys of the natural modes of
oscillation and aerocelastic loads and stability testing.

The most common method of dynamic model design and construc—
tion is direct geometric scaling using similar materials for
model and prototype (replica scaling). All prototype dimensions
are scaled directly through the model~to-prototype characteristic
length scale factor, n = 2'm/lp » and prototype materials are used

in model construction.

In the design of launch vehicle dynamic models it is often
necessary, due primarily to material or manufacturing limitations
(Chapter 9), to employ limited distorted geometric scaling and/or
dissimilar materials. Limited distorted geometric scaling deviates
from replica scaling in that the characteristic length scale factor is
not maintained throughout the entire structure. Small scale models
may require extensive use of these techniques to provide the required
stiffness distributions and to ensure that the several model com=
ponents are strong enough to withstand handling and assembly loads.

In addition, distorted geometric scaling is almost a necessity for
the design of aerocelastic models where the scale factor is dictated
by the wind tunnel imposed limitations on model size. The require-
ment of matching aerodynamic and structural scaling parameters at
these small scale factors may dictate the use of dissimilar
materials.

Total geometric distortion is dictated when very large structures
are to be simulated. In these cases the model may not even resemble

the prototype but the overall dynamic characteristics are retained.

2.1 Vibration Survey Models

Some of the most significant vibration survey models have been
associated with research programs performed at the Langley Research
Center (LRC) of the National Aeronautics and Space Administration.
Two models of the Apollo/Saturn V vehicle were constructed; one at
1/40-scale (Fig. 2.1) and the other at 1/10-scale (Fig. 2.2). The
1/40-8cale model did not use direct geometric scaling and, in some
areas, dissimilar materials were used. The main load carrying
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structure of the 1/10-scale model booster stages was represented by
direct geometric scaling using similar materials but direct scaling

was not employed for the payload and launch escape system.

Good

agreement (Ref 2.1) between experimental and analytical lateral
bending frequencies (Fig. 2.3a) and vibration modes (Fig. 2.3b) was

obtained.
in Reference 2.1.

—~—=— Simplified Pretest Analysis
QO 1/10-Scale Model
[0 1/40-Scale Model

Posttest Analysis

Full-Scale [~ __ . —===

Frequency 2.01
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1,0-0:_‘3:{-}——_-_‘@:;5::51::—‘—02 lst Hode
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Liftoff Burnout

a) TLateral Bending Frequencies

=

TIP

A summary discussion of this model program is presented
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1
! i
_QQ,@__ AL Yy 5' - !
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b) Lateral Vibration Modes

Figure 2,3 Lateral Vibration Characteristics, Saturn V Dynamic Models

In addition to these models a 1/5-scale model of the Saturn I
launch vehicle (Fig. 2.4) was constructed using direct replica

scaling.
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Vibration test results for this model are compared with the
results of a full-scale Saturn I vibration survey in Reference 2.2,
First bending and cluster mode shapes and frequencies for the
model and full-scale vehicle are presented in Figure 2.5.

1/5 Scale | Full Scale

1/5 Scale | Full Scale
Model (S4D~1) 9 Model (84D-1)
F
requency, | 2.6 2,83 }5§}3 Frequency, | 520 | s.68

g Centerline o =] Centerline o s}
8

1 Direction of Motion

o2 - 10)9,
O(HO 5 Qﬁjd <)(:§%5
, ol - 5@

>
>
I

o4

[R—
-1.0 0 +1.0 T Shaker -1,0 0 41,0

f Shaker
Relative Deflection Section A.A Relative Deflection Section A-A

a) TFirst Bending Mode b) First Cluster Mode

Figure 2.5 Fundamental Modes at Maximum Dynamic Pressure-Weight, Saturn I

Other launch vehicles that have undergone extensive analysis
through the use of a dynamic scale model are the Titan IIIA and
Titan IIIC. A complete ground vibration survey was performed at

the Langley Research Center. The Titan IIIC model, in the test
stand, is shown in Figure 2.6,
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The model utilized direct geometric scaling with similar
materials (replica scaling) and full-scale manufacturing tech~
niques except that some deviations were allowed in the Transtage
The model was used to replace the usual full-scale

structure,

vibration survey.,
Reference 2,3.
modes is shown in Figure 2.7.

frequencies is presented in Table 2.1.

A discussion of this test program is found in
Comparison of representative model vibration
Comparison of representative model

Table 2.1 Frequency Comparison, Titan IIIA

and Titan ITIIC 1/5-Scale Models

Titan IIIA, Lift-Off

Titan ITIC, Lift~Off

Mode 5000 1b. Payload 26,000 1b. Payload
Anal., Hz, Expt., Hz. Anal,, Hz. Expt., Hz,
lst pitch 11.7 11.7 5.9 6.0
2nd pitch 23.9 23.6 13.7 12.7
3rd pitch 30.7 32.0 18.2 20.3

Results of a statistical study conducted to establish the
tolerances associated with the dynamic characteristics of the Titan
IIIC are presented in References 2.13 and 2.14. Modal frequency
tolerances for a 997 confidence level, are presented in Table 2.2.

Table 2.2 Modal Frequency Tolerance, Titan III C

Values of Tolerances in %
Plane Time of Flight, Sec Mode 1 Mode 2 Mode 3
Pitch 0 3.6 7.3 14.7
Pitch 105 3.1 5.3 10.6
Yaw 0 4.0 7.5 19.0
Yaw 105 3.4 5.6 13.0

Note that at modes as low as the third, a tolerance varying from

10% to 19%

is determined,
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Modal displacement and slope tolerances for the same configuration
are presented in Table 2.3.

Table 2,3 Modal Displacement and Slope Tolerance, Titan III C

Values of Tolerances in 7%
Description of Group Mode 1 Mode 2 Mode 3
All payloads, all flight times $ 6 21 28
pitch and yaw planes 6 36 50 45
All payloads, all flight times $ 7 12 13
pltch plane 6 47 20 12
All payloads, all flight times ¢ 6 29 121
yaw plane ¥ 25 99 141
5,000 1b payload, all flight times ¢ 3 10 9
pitch and yaw planes 8 21 37 36
26,000 1b payload, all flight times | ¢ 7 51 356
piltch and yaw planes 8 48 31 39
45,000 1b payload, all flight times o} 11 50 227
pitch and yaw planes 0 54 147 37
All payloads, flight time = 0 sec. ¢ 8 34 19
pitch and yaw planes 0 35 47 80
All payloads, flight time = 53 sec. $ 7 18 20
pitch and yaw planes ) 25 46 17
All payloads, flight time = 105 sec.| ¢ 2 14 36
pitch and yaw planes ) 38 35 10
Note 1. ¢ = modal displacement, 6 = modal slope
2. Payload weights are full scale values.

These tolerances represent average values of tolerances evaluated
at individual sensor locations,
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An analytical technique that can be used to improve the quality
of experimental vibration modes was developed in conjunction with
the Titan III Transtage test. Several modes with very little
frequency separation resulted due to the complexity of the structure,
These experimental modes were used as '"assumed" modes for a vibration
analysis and the coupled Transtage mass matrix was determined under
the assumption that only inertial coupling exists. The uncoupled
modes, computed by the vibration analysis, were then used as the
Transtage modes for all further analyses. The uncoupled modes
differed only slightly from the test modes but these differences
were sufficient to provide modal orthogonality with respect to the
mass matrix,

Modal damping data (Ref. 2.14) obtained during the Titan IITA
and Titan IIIC 1/5-scale model test are presented in Figure 2.8.

0.1 /;:::;
Longitudinal Modes —5{%/11,/
=g
E A
0-92 Pz /.%/%
0.02 > g
_ L} /
L~
Lateral Modes -3 g
0.01
0.005
0 Longitudinal Modes, IIIA
0.002
o Lateral Modes, IIIC
a Lateral Modes, IIIA
0.001 l I l
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Model Frequency, (Hz)

Figure 2.8 Modal Damping Data, Titan IIIA
and Titan IIIC 1/5-Scale Models
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2.2 Aeroelastic Models

Aeroelastic models of launch vehicles have been primarily
constructed to investigate the response, and imposed loads, of
vehicles subjected to ground winds and to random transonic buffet
excitation.

2.2.1 Buffet Models

Available wind tunnels impose a size restriction on transonic
buffet models and typical models are restricted to lengths of 10 feet
to 16 feet. Figure 2.10 shows a 7% scale aeroelastic buffet model
of the Titan III vehicle with various payloads. This model was
scaled in accordance with the scale factors dictated by direct
geometric scaling using similar materials but was not constructed
with replica scaling. Only the simulation of bending modes was
necessary to determine buffet response. The bending and shear
stiffnesses were simulated with a machined metal tube of smaller
diameter and higher wall thickness than a directly scaled replica.
The model is shown in Figure 2.9. A basket-like machined pattern
of cut-outs provided the proper ratio of bending to shear stiffness.

Figure 2.9 Titan III 7% Buffet Model Construction
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A. 7% Scale Buffet Model

B. 180-in. Bulbous Payload

C. 260-in. Bulbous Payload

Figure 2.10 Titan III Aeroelastic Buffet Model
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The more important scaling parameters (Ref 2.4) of this Titan III
model are summarized in Table 2.4. The subscripts m and p refer to
model and prototype, respectively.

Table 2.4 Scaling Parameters, Titan III 7% Buffet Model

Variable | Scaling Relation
Length L /% =0,07 =n
n' p 3
Total Mass Mm/Mp = (0.07)
Velocity Vm/Vp =1
Frequency u%/ﬂ% = 1/0.07

The test operating medium and conditions were such that the
relations between the non-dimensional parameters Strouhal Number
(w2/V) and Reynolds Number (pV2/U) were

sm/sp = (wm/wp)(lm/ lp) (Vp/Vm) =1
Rem/Rep = (pm/ pp) (Vm/vp)(ﬁml.zp)(up/um) =n

A complete discussion of the model and test can be found in
Reference 2.4. Comparison between model and scaled full-scale
bending frequencies is shown in Table 2,5.

Table 2,5 Bending Frequencies, Titan IIIC

Pitch, Hz, Yaw, Hz,
Model | Full-Scale Model | Full-Scale
(scaled) (scaled)
1st Bending | 24.3 23,2 23.3 20.5
2nd Bending 40.0 40,3 49,1 39.7
3rd Bending 76.8 71.8 150.2 79.7

Typical test results are presented in Figure 2.11.
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Figure 2.11 Normalized rms Oscillatory Core Bending Moment,
Titan III Model

Aeroelastic models of the Saturn I launch vehicle have been
built at 2% and 8% scale using dynamically similar construction.
Complete structural replica scaling was not attempted. Test
results for these models are presented in References 2.5 and 2.6.
The 2% model was used primarily for the measurement of aerodynamic
damping but it can be regarded as being characteristic of present-
day buffet models.

The scaling approach used to transform model test results into
usable full-scale values is developed in Reference 2.7, This
document also presents test results for a simple buffet model (with
two payload shapes) characteristic of single-body launch vehicles.
References 2.8 through 2.10 present recent test results obtained
during an extension to the Titan III buffet test program. Several
configurations and payloads are considered.
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2.2.2 Wind-Induced Oscillation Models

Several launch vehicle models have been built to predict dynamic
loads induced by ground winds. Ground wind induced oscillations are
associated with periodic vortex shedding on the vehicle and umbilical
tower. Simulation, or at least resonable approximation, of the full-
scale Reynolds Number is an important requirement and usually
necessitates testing in media other than air (e.g., Freon). Proper
simulation of the test gas-model density ratio then requires higher
values of model mass than are dictated by direct density scaling.

One of the most significant ground wind models was the 7.5%
aeroelastic Titan IIIA model and launch tower shown in Figure 2.12.
The model was mounted on a turntable to permit variation of the
relative wind direction.

As it was desirable to match full-scale Reynolds Numbers as
closely as possible, the model was tested (using Freon 12 as the test
medium) in the Langley Research Center 16 foot variable pressure
tunnel. This use of Freon as the test medium imposed certain
restrictions. The imposed density and viscosity ratios were

Om/pp = 3.7 and um/up = 0.757,

Even with Freon it was impossible to match full scale Reynolds
Numbers using practical materials for model construction without
violating mass or stiffness scaling parameters. The test Reynolds
Numbers were 0.45 of the full-scale values, Some other important
scaling parameters for this Titan III model are presented in
Table 2.6

Table 2.6 Scaling Parameters, Titan III 7.57
Aeroelastic Wind-Induced Oscillations Model

Variable Scaling Relation

Length 2 /% =0.,075=n
o p

Velocity V /v =1,228
m p

Frequency wm/wp = 16,37

Dynamic Pressure / = 5,576

y 9, qp

Density pm/pP = 3.7
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Figure 2,12 Titan IIIA 7.5% Aeroelastic Model with Umbilical Mast
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Note that the Strouhal Number (WL/V) was scaled exactly. The mass
ratio was

5 3 _ -3
Mm/Mp = (f«mllp) (pm/pp) = 1.55 x 10",

These scaling parameters, with the exception of the Reynolds
and Mach Numbers, represent a correct set for aeroelastic scaling.
The test Mach Numbers did not equal the full-scale Mach Number but
this discrepancy was shown to be negligible through calibration
tests in which the Reynolds and Strouhal Numbers were held constant
while the Mach Number was varied.

A summary discussion of this test program is presented in
Reference 2.4 and a complete report is to be found in Reference 2.11.
Response of the vehicle or umbilical structure (if affected by vortex
shedding) is primarily a function of the Strouhal Number. Figure 2.13,
taken from this reference, shows the dimensionless acceleration
power spectral density measured for typical Titan III payloads and
umbilical mast configurations.

100 -
Closed Mast
104
>,
3J
-g 1_
A Open Lattice
_ Mast
o
5 1071
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Y P.L Fairing
10724
180 inch P/L
1078 ' ' N — . . : o
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Figure 2,13 Normalized Distribution, Titan III Wind-Induced
Oscillations Model

MARTIN MARIETTA CORPORATION
DENVER DIVISION



MCR—68-87 2-21

Figure 2.14 gives an indication of the effect of relative wind
direction on the dynamic bending moment response of the Titan III
umbilical mast at the Strouhal Number of maximum dynamic response.

~~
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'3%%
o (3] i
g2e Magnitude of
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~Ez
3 o 20
IR = Y]
0 O M
=]
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o
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o 15
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’ 5

—/\/ 60° 90° 120°

Relative Wind Azimuth (B)

Figure 2,14 Contours of Constant Dynamic Moment Coefficient,
Titan III 7,5% WIO Model

The dynamic bending moment coefficients used in this chart were
determined from the relationship

=M, /qLR
CMdyn dyn
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]
o
U]
2]
m
=
]

measured dynamic bending moment, FL

dyn
q = tunnel dynamic pressure, F/L2
L = length of mast, L
and
L
R = f $ W (x)dx
0

where x is the mast coordinate. The function ¢(x) represents
the normalized first bending mode shape (which accounted for
practically all of the respense) and W(x) is the width of the
mast perpendicular to the wind direction. The parameter D
(Figure 2,14) used in computing the reduced velocity (inverse
Strouhal Number) is the width of the tip of the mast,

Other aeroelastic models designed to investigate the effects
of ground winds (Fig. 2.15) have included a 37%-scale Saturn V
model, a 157~scale model of the Scout vehicle and a 207-~scale
Jupiter vehicle, The use of the Langley Research Center l6-foot
variable density transonic tunnel permitted close simulation of
the full-scale Reynolds Number except for the Saturn model. 1In
this case the model was tested at approximately one-third of the
full-scale Reynolds Number (Ref 2.2).

The maximum lateral oscillatory bending moment as a function
of the inverse Strouhal Number (Ref 2.2) for the 3%-scale Saturn V
model is shown in Figure 2.16., A large response over a limited
range of inverse Strouhal Number is indicated for the lowest
damping case. This peak is seen to vanish as damping is increased.

A summary of publications dealing with the effects of ground
winds on launch vehicles will be found in Reference 2,12,
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3. DYNAMIC MODEL SCALING PHILOSOPHY

The basic requirement governing the design of any dynamic
model is that of similitude between the model and the full-scale
structure (or phenomenon) which is to be simulated. This require-
ment must be satisified for any of the time-~dependent physical
processes or characteristics that are of interest to the experi-
menter. The analytical tool generally used to develop the
similjitude laws governing model design is dimensional analysis.

The development of this method (Ref 3.1, 3.2, 3.3, and 3.4) is
attributed to Buckingham and Rayleigh. Dimensional analysis is
based upon the hypothesis that the solution of a physical problem
is expressible in the form of a dimensionally homogeneous equation
written in terms of the variables affecting the problem. Once
these variables are specified, a group of dimensionless scaling
parameters can be derived. Similitude is achieved when the scaling
parameters are identical for both the model and the prototype.

3.1 Scaling Laws for Structural Vibrations of Launch Vehicles

The prediction of the vibrational characteristics of launch
vehicles through the use of scale models is based upon the assump-
tion that both model and prototype are governed by the same physical
laws. From these physical laws can be established the modeling laws
which mathematically relate the corresponding characteristics of the
two systems. The non-dimensional form of the system governing
equations must be the same for both model and prototype.

In general, structural models can be separated into three
classes; the particular model choice is governed by the complexity
of the prototype structure, the type of exciting forces and the

frequency range to be investigated. A graphical representation of
the classes is shown in Figure 3.1.

If the exciting frequencies are below the first few structural
frequencies many of the details present in the prototype vehicle
can be neglected, the structure can be represented by mass-spring-
damper elements and, within this limited frequency range, the model
will exhibit faithful dynamic similarity. As the exciting frequency
spectrum increases a more complete geometrical similarity is
required as the prototype vehicle no longer behaves as a single
unit but rather becomes a multi-branched structure,
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Figure 3.1 Dynamic Model Classes

The form of applied excitation also governs the choice of
model. 1If the applied forces are approximately uniform over the
surface, geometric scaling of skin panels is a reasonable approach.
For propagating excitation (e.g., noise) it becomes necessary to
accurately scale geometry, mass and stiffness characteristics.

There exist two mathods of predicting the behavior of physical
systems. One is by means of analysis or computer simulation whereby
a mathematical model or an analog is created of the physical system
in question. The second method is by tests om a prototype or a
properly scaled model. Considering the model test, the problem is
to identify the physical parameters which govern the phenomenon of
interest, to cast them into groups of non-dimensional variables,
to perform tests on properly scaled models, and to apply the results
from these tests to prediction of the behavior of the protetype.
Limitations exist for both systems., Assumptions made in the
mathematical model may be too restrictive or inaccurate, thereby
limiting the range of applicability, More complete mathematical
models may be too complex for economical solutions. Scaled models
may not be satisfactory if all the important variables are not
identified and/or if proper similitude is not provided. The theory
of dimensional analysis is based on the Buckingham Pi theorem from
which scaling laws are evolved.
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The measure of physical phenomena can be expressed in units

of the independent quantities of mass, length, time, and tempera-
ture either singly or in multiple combinations.* Assume a physical
phenomenon y depends on several independent variables, x .
x_ in some unknown manner. If all the independent varia%les are
kgown, it is possible to predict the outcome y for a given set

» Xp5 ¢ o« X by means of a properly scaled model test, even
i% the function8l relationship between y and its independent
variables in unknown,

The following theory underlies the derivation of the scaling
laws. The functional relationship between y and all the variables
on which it depends can be expressed in general as

y = f(xl, Xoy o o o xn) (1

If the exact nature of the function f were known, then this
would be the mathematical expression of the physical law expressing
the dependence of y on x 10 ¥ +« « X_» This physical law is
independent of the units use% in the mgasurement, and applies
just as well to the model as it does to the prototype. Using
the subscripts m to apply to the model and p to apply to the
prototype, we have the relationships

ym = f(xlm’ sz, P ) Xm)

(2)

yp = f(xlp, sz, « o e an)

Since the variables in a physical problem can be expressed
in terms of the four basic dimensions of mass, length, time,
and temperature, then the n + 1 variables (y , X., X,y ¢ « o X )
can be combined into (n + 1)-4 = n~3 dimensionless groups. n

Remembering that the physical law is the same for model and
prototype, Equation 2 can then be rewritten

i = F(ﬂ

1Im . m(n=3)m)

3m .

= F(Trzp,ﬂ3p, ¢ e o TT(n"‘3)P)

(3)
Mo

where the dimensionless groups 7. , 7. , contain the dependent
variable y, and the other dimensionleSS5 groups contain the
independent variables. If the model is so constructed that the
similitude requirements

*Electrical and magnetic phenomena require additional units.
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Tom ~ ﬂ2p
I I (4)
m™o~3)m = w(n-3)p

are satisfied, then it must follow from Equation 3 that the scaling
law for the dependent variable is

Mm = TTip (5

Since Y {contained in T, ) can be measured from the model
test, the dimensionless quant%%y ﬂl T, can therefore be
P 1m
determined experimentally.

Thus knowing 7. , the numerical value of the physical quantity
y_ contained in T Ban be calculated. Equation 5 thus gives the
dBsired scale fac%gr for the dependent variable yp.

With four basic dimensions in the problem (mass, length, time,
and temperature), four scale factors may be chosen arbitrarily to
sult test requirements. The remaining scale factors will then be
expressed in terms of one or more of these four,

In general, if all the variables on which a particular
phenomenon depends are known, dimensional analysis will give the
desired scaling law for the dependent variable and all the
similitude requirements necessary to ensure its theoretical
validity. However, two important practical difficulties usually
must be overcome to develop a workable scaling law. The first
difficulty is the practical impossibility of satisfying all the
similitude requirements that are theoretically necessary (Eq. 4).
An approximately correct scaling law, however, can still be obtained.
Only by experimentation can the importance of the similitude
requirements that are necessarily neglected, be determined. 1In
any case, empirical corrections to the scaling law can usually
be developed. For example, if a particular similitude require~
ment, T, = T __, proves to be important, and yet cannot be
satisfied, the"difficulty can be overcome by determining experi-
mentally how ﬁl varies with ﬂk’ keeping all other T terms constant.

The second difficulty is that a complete knowledge of all
the variables may not exist. Thus, the unsatisfied similitude
requirement for each unknown variable may cause deviations from
the scaling law.
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The study of the modeling parameters is applicable to the
determination of lateral vibrations of aerospace vehicles, vehicle
stages, and orbiting space structures such as antennas, mirrors
and space stations. The application of scaling techniques has
been used to study a wide variety of mechanics problems. The
work in this study investigates, in a quantitative manner, some
applications of unconventional modeling techniques. The purpose
of this approach is to identify and to evaluate those techniques
that can be used on structures and structural problems that do
not lend themselves to the more common modeling techniques.

The formulation of a problem in dynamics response requires
synthesis of three related parts. These are

1. Geometry of the structure and its components.

2, Mechanical properties of the material and characteristics
of joining techniques used in the structure.

3. Loads and enviromment of the structure.

Dimensional analysis is used to identify the numerical values
of scaled indepdendent variables (geometry and materials properties)
required to provide complete similitude for lateral vibrations of
space vehicle, Requirements of model geometry and model material
cannot be satisfied using conventional modeling techniques. It
is the intent of this study to determine the values of materials
properties (such as density and modulus) required for the preserva-
tion of lateral vibration similitude. The limits imposed on model
size are identified by the availability and economy of unusual
techniques.

A study of the convenience of the four arbitrary scale
factors can be undertaken to identify which combinations are most
convenient for the particular aspect of the problem being modeled.
One requirement for the set of properties (independent variables)
chosen is that the basic dimensions of M, L. T, and § must be
obtainable by combinations of those properties. A very common
choice is as follows:

Symbol Property Dimension Scale Factor
L Length L '3 L
mo o mo_
2 L 1
P p
Mass Densit M3 M L3
p y Pn o mm
3. 2
ML
P P P
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Symbol Property Dimension Scale Factor
v Velocity Lt v Lm'r'lm
v_ LPT—-lp -3
¢ Temperature op _EE~_ ORm .
6 o T4
P Ry

Once chosen, these factors must be used for scaling on all of the
aspects of the given problem:

Instead of the list given above, any set of independent
variables which contains all four of the basic dimensions can be
chosen. For example, one can choose a pressure variable instead
of mass density since pvZ has units of pressure, In the end,
however, the similitude requirements for all the other independent
variables and the scaling laws for the dependent variables are
expressed in terms of the four scale factors n,, n,, n,, and n,
which have been chosen. Thus, this choice determines the
specific difficulties which will be encountered in building the
scale-model., A particular difficulty can be exchanged for a
less—formidable difficulty by altering the choice of arbitrary
scale factors.

Candidate fabrication techniques for metal models are:
electroplating copper or mickel on a wax mandrel (a system used
for very thin shell specimens for buckling experiments); vacuum
deposition of thin films on lost wax and chem-milling (currently
used on aluminum and titanium aerospace structures).

Application of nonmetallic materials (plastics, fiberglass
composites, and sandwich composites) for models are possible.
It is important to identify those materials which can provide
appreciable variation in other properties such as modulus and
density and still maintain the required geometric similitude.

Producing models of materials different from the prototype
generally means a difference in material paramters (E, p, and V).
For example, let us consider the following similitude requirement,

2 2
pmz mo_ ppzp
E t2 E t2
m m PP
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Assume that all times for model and prototype are required to be
the same for a 107 model. We then have

E o
= P, M 1
l=§-% 5 * oo

m P

Obviously, this cannot be satisfied using the same material for
the prototype and model. If a broad choice of material is avail-~
able, we can choose for the model

E = Ep » a very flexible material
n 10

pm = lOpp , a very dense material

A phenomenon that can be important in modeling using plastics
is the presence of viscoelastic behavior. If the model material
exhibits a strain-rate effect during vibration studies, but the
prototype material does not, then the modeling laws must account
for this violation of the similitude requirements.

Requirements for adequate scaling of joint details (including
friction, roughness, prestress, and internal forces of fasteners)
is a formidable task. The need to make small-scale exact replicas
of structural joints results from the lack of an analytical or
empirical model of the dynamic behavior of these joints,

3.2 Basic Dimensions for Scaling Analysis

For the several classes of problems to be considered, we
will first establish three arbitrary scale factors from which
we can isolate mass (or force), length, and time. Although the
primary interest is dynamic scaling, we shall not neglect the
static problem, The procedure is to build the dynamic problem
from the static and to have forced vibrations related to free
vibrations.

To indicate many of the terms that should be considered in
structural scaling, Table 3-1 is presented in dimensional form.
Both the engineering dimensions of force (F), length (L), and
time (T) are given as well as the basic dimensions of mass (M),
length (L), and time (T). Converting from one system to the
other we use for the definition of force mass times acceleration
or symbolically

F = MLT 2
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Table 3.1 Physical Quantities

and Dimensions

Poisson Ratio
Wave Number

Quantity Symbol}] Engineering Units | Basic Units
Length (Any linear dimension) L in. L L
Radius R in. L L
Thickness h in. L L
Displacement w in. L L
Dynamic Response Amplitude x in. L L
Area A in.2 L2 L2
Volume \ in. L3 L3
Moment of Inertia 1 in. L4 L4
Polar Moment J in.4 L4 L4 2
Force P b, ° F MLT™
Moment M in. 1b. FL ML21~2
Pressure q 1b/in2 FL-% ML=1l7=2
Stress o 1b/in2 FL™ ML=17~2
Modulus of Elasticity E 1b/in? FL™2 ML-17~2
Shear Modulus G 1b/in? FL~2 ML-1T7=2
Unit Mass Density o 1b.sec?/in4| FL-472 ML=3
Unit Weight Density Y 1b/in3 FL-3 ML=27~2
Velocity v in/sec LT-1 -1
Acceleration a in/sec? LT‘2 LT~
Gravity constant g in/sec LT=2 LT™2
Time t sec T T
Frequency w 1l/sec 1 =1
Beam Extension Rigidity AE 1b F MLT=2
Beam Bending Rigidity EI in21b FL? ML3T‘%
Beam Torsion Rigidity 63 | in21b FL2 ML3T;
Beam Shear Rigidity kAG | 1b F MLTE
Shell Extension Rigidity K 1b/in rL-1 MT™
Shell Flexural Rigidity D in. 1b. FL ML27~2

\Y)
n
¢

Coordinate Angle

Arbitrary Scale Factor, n
Dimensionless Quantity, m
Subscript m (model)
Subscript p (prototype)

i

i=1, 2, .
i = 1’ 2, . . .

.
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Several classes of problems become apparent when considering
launch vehicle structures. They may be separated into beam-type
and shell-type structures, free vibrations or forced vibrations, with
liquid or solid propellants, various boundary conditions and several
gravity-type loadings., Some of the previous general discussions
regarding m terms and arbitrary scale factors are considered in
more detail for several kinds of structures, loadings and responses.

To isolate the basic dimensions using arbitrary scale factors
n, 0, and n., we will establish, the scaling ratios of F, L, and T
for model ang prototype, The usual arbitrary scale factor is the
length factor and will be designated n, so that

1
5 L

1 2 L
P P

L = n,L (6)

Using the ratio of modulus of elasticity as another arbitrary
scale factor we have

E FL 2
n. = m - mnmn
2
E -2
FL
P pp

From Equation 6 for oy this can be expressed as
F
m

F
p

§ -2
1

)
and solving for the model force

2
Fm = n; nsz (7N

To incorporate the time scale factor the third arbitrary
scale factor will be ratio of mass densities so that

o) FL -4T 2

n =B . _mm m
3 P FL —4T 2
PP p
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By using Equations 6 and 7 we can express n, as

2
2 =4, T
n, = (n1 nz)(nl ) m
2
T
P
and solving for Tm we have
-1/2_ 1/2
Tm n,n, ny Tp (8)

Based on the previous discussion of 7 terms it is now possible
to scale several kinds of problems, and to design properties into
the model depending on the quantity to be measured. It 1s important
to note that independent variables are scaled, dependent variables
measured, and tinis measured value can be correlated to the prototype
by the scaling laws, Important pieces of information available
from the T terms include the ranges of physical values that must
be provided or may be impossible to satisfy.

3.2.1s Static Beam, Scaled Geometrically

For the static problem either stress or deflection are the
usual dependent variables of interest., We can isolate the
important independent parameters and write the following:

u = (P, pg, M, &, E, V) (9a)
c = g(P, pg, M, &, E, V) (9b)
Dependent 7 terms
T, ==
1 2
g
T2 ™%

Independent 7 terms

P
T, = ===
3 Elz
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T = M
5 mB
\"m
“6 Vp = ]

Applying the scaling laws 7, = 7

im ip

Model dimensions from the 7 terms in terms of arbitrary factors
become for the dependent variables

u = up m = nlup (10a)
P
Em

Op ™ 9 E; = n, % (10b)

Em zmz 2
Pm =5 3 Pp = 0 nsz (1l1la)
P 2
p
E 2
- 3R I
pmgm E g ppgp n nZOpgp (11b)
P m
Em £m3 3
Mm = 5 F Mp = nl nsz (1lc)
P
P
Vm = Vp (11d)

Model deflections scale directly as the length scale factor and
stresses as the modulus scale factor providing the other quantities
are properly scaled,

If the weight of the structure is not important then 7, can
be neglected., If, however, the structural weight is important
similitude requires that m, be satisfied,

3.2.2 Static Beam, Not Scaled Geometrically

If for some purpose of convenience the model does not faithe
fully reproduce the prototype in a geometric way then other

RAIRRRTIN MMARIETTA CORFPORATION
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properties need to be specified and scaled, Geometric scaling
automatically provides similitude for the additional terms
involving properties of areas.

u = f(P. pg' M' 2. E’ v. EI. GJ. kAG) (103)

o = g(P, pg, M, &, E, v, EI, GJ, KAG) (10b)

Dependent 7 terms are

T, o= =
1 )
T, = g
2 E

Independent 7 terms become

it R weem——

3 Ezz
T, = P&E
.
5 E£3
Vm
Ty = 5. = 1

P
T = i
7 PZZ
GJ
ﬂ' B et
8 PZZ
o . kG
9 P

For ﬂm = 7 and applying this to the above 7 terms we can scale
model quangities for the dependent variables from Equation 10a
and 10b
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um = nl up
O'm = n2 O'p

and for the dependent variables using Equations lla through 11d
and including Tye W and 7, we have for the model

8 9
2
Pm nl n2 Pp
- -1
P8 " 2 pp gp
= 3 M
Mm nl nz Jp
vy = vp
P92 4
EL = m m EI = n nET (12a)
P P
Pm zhz 4
Gme =3 3 GPJP = n nZGpJp (12b)
p &
P
P 2
kAG = == KAG = n“nkAG (12¢)
mmm Pp PPP 1 2ppp

Quantities from the geometrically scaled model are retained.
In addition the bending, torsional, and shear rigidities are included
to ensure their proper scaling., 1If, however, one or more of these
additional terms is not considered important, depending on the
loading condition, then that scaling can be disregarded,

3.2.3 [Free Vibrations, Geometrically Scaled Beam

Another class of problems involving beams and beam=like
structures is free vibrations, Many launch vehicle structures
are large beams of circular cross section, Boundary conditions,

and loads change on the beam from prior to launch, to liftoff,
to staging, etc.

The usual depedent variable for free vibrations are the
natural frequencies w. If, however, stress or displacement are
also required, the previous treatments given by Equations 10a

PIRRTIN MARIETTA CORPORDBTION
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and 10b apply, providing the important similitude requirements
have been met., For free vibrations of a beam subjected to a load
(loads) P and with unit mass density p the important independent
variables can be expressed as

w=£(P, pgy % E,Vv )

The dependent 7 term for the natural frequency y is given by

", = wleg
1 E

In a manner similar to the static problem the other 7 terms
become

il = —-P—-

2 )

2

T3 PE E
V.

m
oy < b

e

Making wm = 1 for dynamic similitude we find the frequency
for the model as

L E p
m A E p P
m P m
- -1 1/2 =1/2
w, n, T om, n, wp (13)

This result is to be expected after examining Equation 8 for model
time T;;» The frequency has the dimensions of T=1 (referring to
Table 3=1) and obviously Equation 13 is the reciprocal of Equation
8, When modeling with identical materials n, = 1, n, = 1 then
the well known expression for model and prototype fréquency
relationship (1/nj) is apparent from Equation 13, However, as
shown for the independent variables given below, when the mass of
the structure compared to the applied load (loads) P is large and
must be scaled then similitude is violated when n, = 1 and model

- 2
and prototype are of the same material,
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For the independent variables from Equation 11

Pm = nl n2 Pp

= n ~1 n
pmgm 1 2 ngp
v, = \)P

If the external load (loads) P are significantly greater than
the welght of the beam then scaling the model loads by nlz X
prototype load (and ny = 1) then model and prototype can be of the
same material and frequencies scale as given. It is theorectically
possible, by examining Equation 13 to select any frequency ratio
that appears convenient, The n., term is the length factor and
can be manipulated rather easily, Both n, and n, refer to the
material properties of a modeling substance, Mahipulations such
as centrifuges, composite materials, additional masses are some
of the devices used to modify these arbitrary scale factors,

3.2.4 Free Vibrations, Beam Not Scaled Geometrically

By using the three additional terms introduced for beams
not scaled geometrically and by using the procedure outlined above
this class of problem can also be scaled,

3.2,5 Forced Vibrations, Geometrically Scaled Beam

For forced vibrations the dependent quantity of interest is
generally the amplitude of vibration. Both stress and displacement
have been discussed and modeling for these quantities has been
established, We will use the hat symbol to denote the forcing
frequency as w and the peak value (sinusoidal excitation) of the
forcing function as P, Other symbols refer to quantities defined
in Table 3-1,

N ~

x = £(P, pgy & E, v, wy, P)

If dynamic similitude is provided then the dependent variable x
can be nondimensionalized as

S+
1 2

To ensure dynamic similitude the independent variables when made
nondimensional the corresponding terms must be made numerically
equal, These variables are given by

MARTIN MARIETTA CORPORATION
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A
.2
g2

Previously developed equations permit us to write directly for the
dependent variable, the amplitude of vibration

Xm = nlxp

For the several independent terms

2

PaT 0 B R

= -1 n
PrBn 1 2 ppgp
v o=y
m P
~ _ =1 1/ -1/2 =~
w, = 0y 2 n, o (14a)
P =n’n P (14b)
m 1 "27°p

To scale the amplitude of the response by the length scale
factor the model must be vibrated as given by ®_with a peak force
of Pm. If the applied model load (loads) meets"the requirement of
P and the weight of the structure is not significant then similar
materials for model and prototype provide well defined scaling, If
however, there are no loads, then Ty must be satisfied and the term
P becomes important.

3.,2,6 Forced Vibrations, Beam Not Scaled Geometrically

As discussed in 3,2,.4, no new techniques or terms are required,
Those rigidities not automatically satisfied by geometric scaling
(bending, torsion, and shear) are scaled with the n, and n, terms to
appropriate powers as developed by Equations 1l2a to™l2c,
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3.3 Matrix Approach to Compatible Scaling Parameters

A generalized matrix approach to dimensional analysis can be
used to develop scaling laws for vibrations of launch vehicle

structures. The technique is gtraightforward and reduces the
problem to one of matrix algebra.

In principle, a physical problem will involve a functional

relationship among n variables necessary to describe the phenomonon.
For example

VoS £V, Vo ov oy V1), (15)

or equivalently,

BV, Voo o o v, V) =0 (16)

Dimensional analysis presupposes the form of Equation 16to be
that of a product of the pertinent variables, exponentiaged in
accordance with their unknown contribution to the product,
Theoretically, there are n functional relations of the type shown
in Equation 15 (or 16). However, all n of these relations will not
be independent as will be shown., Further, if Equation 16 is
dimensionally homogeneous (that is, it does not depend on the
fundamental units of measurement) it can be reduced to a relation
among a complete set of dimensionless products, or scaling
parameters, "j’

F('ﬂ'l9 'ﬂ'z’ T ) 'ITN) =0 (17)

In essence, this is a statement of Buckingham's Theorem (Ref 3.5).
When a force, length, time system of measurement is used, the size,

N, of a complete set of dimensionless products is equal to the number,

n, of necessary variables minus the number, d, of fundamental dimen~
sions (Ref 3.6). Thus, there are N independent relations of the
form of Equationlé. Equation 17 does not imply that the functional -
relationship is known, but merely that one exists. Calculation of
the dimensionless products, 1., is accomplished through dimensional
analysis. However, the functional relationship, F, among these
products must lie within the realm of experimentation. Whatever

the form of Equationl7, it must be satisfied by both the model and
the prototype,

A dimensionless product can be expressed in the form

ij
T4 - I l Vi » i=1,2, . . ., N (18)

i=1
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A dimensional equation (one expressed in terms of fundamental
dimensions only) can be obtained from Equation 18 if each variable
V,, is expressed in terms of its fundamental dimepsions. For
eXample, if the acceleration of gravity is the n  wvariable,

then an = LT~2 where the * indicates dimensionality.

Let
. P

v*= |d! p K (19)
i -1 K

where D, is the kth fundamental dimension. The exponents, q. .,
can be éetermined if Equation 15 (or 16) is expressed in
product form

n Ci
K [ 1| Vi =1 (20)
l:

where K is some constant.

This is equivalent to. the jth dimensionless product of Equation
4, where Ci is the j column of qij'

Substitution of Equation 19 into a dimensional form of
Equation 20 yields

€5

d P,
_ ] ] D, + =1 (21)
i=1 | k=1

In order for Equation 21 to be satisfied, all exponents must
vanish. Therefore,

[Pki] {ci} = 0. (22)

Equation 22 represents d linear, homogeneous equations in n unknowns.
For a well formulated analysis the rank of [P, .] will be d, so

that (n-d) = N independent solutions exist. is is consistent
with the number of dimensionless products in a complete set (see
Equation 17) ¢« Equation 22 can be solved by several techniques

of matrix algebra, one of which is outlined as follows:

1) Remove N columns of {P] by post-multiplication with an
(n x d) transformation matrix [Zl], forming a (d x d}
matrix [Pl],

(2,1 = [P] (2] (23)

MARTINM MARIETYA CORPORATION
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where [Z,] must be chosen so0 as not to render [P.]
singular. The remaining columns of [P] then form a
(d x N) matrix [le so that

(2,1 = [P] [2,] (24)
where [22] is an (n x N) transformation matrix.

Let [Q] be an arbitrary (N x N) matrix whose columns

are mutually orthogonal (such as the (N x N) identity
matrix). Then [Q] represents an arbitrary choice of the
N independent q,.'s of Equationl18, forming N linearly
independent vec%Ars. A matrix equation analogous to
Equation 22 can be written for the exponents of the N
dimensionless parameters

[P,] (U] + [P,] [Q] =0 (25)

where the vectors of [U] are the unknown qi,'s.
Therefore, since [Pl] is non-singular, J

-1
[ul = -[p,17" [B,] [al- (26)

The exponents of the pertinent physical variables, V.,
can be determined by assembling the [U] and [Q]
matrices according to

la;41 = [291 [Ul + [Z,] [Ql. (27N

With the solution of Equation 27, a complete set of N
dimensionless scaling parameters is determined.

3.3.1 Example of Scaling Parameter Derivation

Consider the vibration of a slender beam with bending and
shear stiffness. The functional relationship between the physical
variables is

or

where

f(m, %2, AG, EI)
f(m, %, AG, EI, w) =0

£
I

€
il

natural frequency, 1/T
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mass/unit length, FTZ/L2

m =
% = length, L
AG = shear stiffness, F
EI = bending stiffness, FL2
and
n = 5 (pertinent variables)
d = 3 (fundamental dimensions)
N = 2 (size of complete set of dimensionless products),

1) The n physical variables can be expressed in terms of
the d basic dimensions (¥, L, T) through the (d x n)

matrix P
m § AG EI w
F 10 1 1 0
[Pl = L |-2 1 0 2 o0
T 2 0 0 0 -1

The (n x d) matrix Zj,and the (n x N) matrix Z, can

be arbitrarily selected to be 2

1 0 O 00
0 1 0 00
[Zl] = 10 0 1 [Zzl = |00
60 0 O 10
0 0 0 01

The (d x d) matrix Pl and the (d x N) matrix P2 are

[pl]=[P1[zll=F 0 1 1 o]‘loo =[101]
2 1 0 2 ollo1o -210
2 0 0 0-1floo1 200
000
000
and :
[p?_] = [P][Zz] = FL 011 o] 0 0] = [1 0]
21020]]loo0 20
2000-1)]00 0-1
10
0 1
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2) If the (N x N) matrix Q is defined to be

[Ql = [} 0],
01

the (d x N) matrix U is

-1
(vl = -[p,7"1 [?,] [al

1 1
=0 0 5 1 0 10]-02
0 -1 -1 2 ollo1 -2 1
-10—%— 0 -1 -1 -+

3) The exponents are therefore

[qijl = [le {ul + [ZZI [ql
=1 o o]} o %- + fo of [1 o
o 1 ofl-2 1 0 0 [0 1]
0 0 1f|-1-3 0 0
0 0 0 10
0 0 0 0 1]
_ [~ 1] - - -ﬁl Trg
[qijJ =0 3 + oo} = mfo %_
= i 00 2l-2 1
-l 00 AG |-1 -%
0 0 10
| 0 0 o 1] EIp1 0
w _0 l«

4) The N = 2 dimensionless scaling parameters are
determined from the vectors of qij as follows
2 1/2

™= EI/AGL™, T, =m Q,w/(AG)l/2 or ﬂz' = mZZwZ/AG.
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m, and 7, comprise the complete set of dimensionless
sCaling parameters and any other parameter can be
obtained from them. For example

T

1
2 = m24w2

Wl EI

* =
Ty
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4, VIBRATIONS OF BEAM~-LIKE STRUCTURES

Launch vehicles or certain portions of them, can be represented
as beam structures. The modal characteristics are determined from
the bending, torsional, shear, and longitudinal stiffnesses, Response
is governed by the mass distributions, and the applied loads. Each
of these quantities can be a function of position along the long=~
itudinal axis. '

Four classes of vibration problems are considered for dynamic
scaling. The are identified as: (1) Free vibrations, no external
loads; (2) Free vibrations, large external loads; (3) Forced
vibrations, no external loads; (4) Forced vibrations large external
loads., Notations, symbols, and arbitrary scale factors from Section
3 are retained. For convenience we repeat the arbitrary scale factors
and the resulting similitude requirements for force (F), length (L),
and time (T). Subscripts m and p represent model and prototype
respectively.

zm

n, = T (1la)
P

n, = n (1b)
E

p

P
n, = ;f& (1c)
P

After manipulating the dimensions of %, E, and p we have for
model requirements in terms of prototype dimensions from Equation 1.

Lm =0y Lp (2a)
F = n 2 F (2b)

m oM P2 fp

- -1/2 _1/2
m o P12 i3 Tp (2¢)

Any of the physical properties of interest has one or more
of these dimensions raised to some power,
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4,1 Free Vibrations, No External Loads

It is assumed that beam rigidities are representative of
cylindrical shells exhibiting beam—like behavior. End conditions
for the model must be identical to those for the prototype.

For the free vibration problem the dependent variable of
interest is the frequency of vibration of the several mode shapes.
Without external loads the frequency can be shown to depend on
several independent factors such that

w= f(pg, &, E, EI, GJ, kAG) (3)
Frequency & can be written nondimensionally as
T, = wl P
! E
From which we can write

. 1-1 n21/2 n3-1/2wp @

For this relationship to be valid the following model terms
must be gscaled using preselected values of Ny 0y and nj.

Pun = P Dy P8, (5a)

EI =n 4 n, E I (5b)

mm 1 "27p7p

Gme =n, n, Gp Jp (5¢)
2

kmAme nl n2 kpApGp (5d)

The most difficult modeling requirement to meet is given in
Equation 5a, For g = g _, both model and prototype in the same
gravity field, the mass Bensity ratio requirement is shown in

Fig., 4.1, The three lines show the effect of changing modulus,

The upper line is a model material twice as stiff as the prototype,
the middle line is the same modulus for model and prototype and

the lower line is a model material 1/2 as stiff as the prototype,
As the model becomes relatively smaller the model material must
become increasingly more dense,

i
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0 | | )
0 10 20 30 40
L
nll = S-LR
m

Fig., 4.1 Model Density Requirements as a

Function Scale Factor for g =g
m P

By solving for ny in Equation 5a and substituting in Equation 4
the model frequency be&comes

e -l/2 1/2 g - - .18
w n, n3 om wp’ for n, non, l°m (6)
gp 8p

If model and prototype are made of the same material and
tested in the same g field, Equation 6 gives wo= W however,
from Equation 4 for the same material P

w = n [V
P

To satisfy both requirements, it is apparent that n., = 1 and the
model becomes exactly the same as the prototype,

For structures carrying no external loads or small external
loads, one of the means of providing a different g enviromment
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(for n, <1 g > g ) is the use of a centrifuge. Model and
protot¥pe cldn Phen Be modeled of the same material and the
frequency relation,

-1

W =n

w_can be used
m 1 P

if

Another means of achieving the proper mass effect is to attach to
the model additional material and not use centrifugal force,
Added material must not provide rigidities that are not scaled

or accounted for,

When transverse bending modes are being studied, then Equation
5b defines that rigidity requirement for the model, Torsional
vibrations require the model condition given in Equation 5c¢c, If
large deformations are expected, or if the structure is short with
respect to its depth, Equation 5d must be satisfied for the model
to provide accurate dynamic response, )

Free lateral vibrations of beams can be found from the partial
differential equations of the form

4 T a2
2 2

Bl <% = - pg — 2 ™
ag 32

Consideration of boundary conditions provides solutions for
the response of a particular system, Exact geometric scaling
provides the proper moment of inertia (I) and is accounted for
by the scale factor n.. Material properties of the beam are
included in the modulus term E, and scaled by the factor n,.
Another property of the system i1s the unit mass density p and
is included in the arbitrary scale factor n,. A term that is not
arbitrary is the gravity constant g. The other two terms of
Equation 7 are partial derivatives of the dynamic displacement x,
fourth order in the length direction, second order in time, and
are included in the modeling laws.

4,2 Free Vibrations, Large External Loads

For many of the practical cases the mass of the structure is
small compared to other loads imposed on that structure. These
may come from several sources such as payload, propellants, winds,
movement through the atmosphere, control forces, trajectory
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profiles, and others, The imposed moments, shears, torques and
axial loads must be properly scaled for reliable model representa-
tion of large scale launch vehicles,

Continuing in the manner previously established, the frequency
of a beam-like structure with a relatively small beam mass is a
function of the following external loads and beam properties,

w= £f(P, M, pg, %, E, EI, GJ, kAG) (8)

The relationship for model and prototype frequency is

-1 1/2 _=1/2
£ O / i3 / “ (4)

Model requirements for the independent terms are

2

Pm =0 nsz (9a)
M =n 3n M (9b)
m 1 72p

-1
Pnm = P1 P2Pp8p (5a)
EI =n 4n EI (5b)
m m 1 2% p

4
Gme ny nszJp (5¢)
kKAG =n’nkAG (5d)

mmm 1 2% pp

The two vibration problems of one system with no external
vibrating loads and anotaer with large external loads is analogous
to comparing a vibrating spring where in one case the spring only
vibrates and the second case when the spring supports a large
vibrating mass, 1In the first instance the inertial forces come
from the vibrating spring and are important because they are the
only inertial forces, In the second case when the mass is large
compared to the spring mass the predominant inertial force is that
of the mass., Scaling for this kind of load is accomplished using
the similitude requirement of LEquation 5a, Beam mass if sufficiently
small is neglected and the supported mass oscillating in the same as
the beam is scaled dynamically,

Transverse vibrations are modified by axial loads on beams.
" A loaded launch vehicle on the stand or an accelerating vehicle
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undergoes axial loading, and the magnitude of the load changes
the frequency of vibration, Scaling this load is accomplished
using Equation 9a, The model force is the square of the length
scale factor times the modulus ratio times the prototype load,

Another source of axial load, acting as a prestress, exists
when launch vehicle tanks are pressurized. Lateral vibrational
frequencies increase when longitudinal tension is applied to a
beam and decrease when the beam is compressed., The tensile
load from tensile prestress (pressure times cross sectional area)
is scaled through the force term in Equation 9a,

Shear loads, applied transversely to the axis of the beam,
are scaled by the same factors used for axial loads. Equation 9a
expresses the similitude requirements for shearing forces,

Moments and torques are scaled by Equation 9b, the moment
is applied in a plane containing the beam axis, and the torque
in a plane normal to the axis. Whereas the force scale factor
for the model is modified by the square of the length ratio the
moment and/or torque on the model is a function of the length
factor cubed times the modulus ratio.

Lateral vibrations are resisted by the stiffness term EI,
scaled in Equation 5b, If this quantity is scaled and if the
forces and masses that influence the response are properly scaled
the free vibrations of the prototype structures can be found from
the model from Equation 4, Torsional stiffness supplied by the
GJ term provides the structural resistance to torsiomal vibratioms,
and the same frequency equation applies,

When the model is an exact replica of the prototype and made
of the same material, stiffnesses EI, GJ, and kAG will be numerically
correct and n, and n3 will be equal to unity. Force quantities

will bi scale% by n%, moment and torque by n13 and inertial loads
by n.,=+,
1

4,3 Forced Vibrations, No External Loads

Beam structures not carrying masses, not subjected to axial
loads, and being excited by time dependent forces can be dynamically
modeled. Frequency becomes an independent variable, and is
scaled according to the previously established similitude require=
ments, Additionally, the maximum values of the exciting force
applied to the model must be modeled assuming the prototype force
is repetitive and of some known magnitude.
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For the beam only the variables important to its response
under forced vibrations with amplitude or the dependent variables
can be given in the form

~ ~

X = f(w’ P, 8' l, E' EI’ GJ' kAG) (10)

The hat superscript over w and P designate the frequency of the
forcing function and the maximum value of the force, Any periodic,
aperiodic, varying amplitude, or transient forcing system can be
modeled if each of the frequency and load components of the complex
system are scaled individually then combined and applied simultan-
eously to the model.

When complete similitude is achieved, the relationship between
the response of the model and prototype is given by

- 1 ¥ 1y

Every component of the frequency spectrum of the forcing
function imposed on the model is given by

~ -1 1/2  -1/2 7
w =80, " n, n, wp, (12a)

and the corresponding force applied to the model when scaled
dynamically becomes
p 20, P (12b)
m 1 2

The pmg term for unloaded structures is given by Equation Ja
and applies %o the forced vibration problem with the same discussion
found for the free vibration problem with the same discussion
found for the free vibrations. Remaining wvariables in Equation 9

are agaln scaled as rigidity terms given by Equations 5a, 5b, and
5c,

4.4 Forced Vibrations, With External Loads

External loads, not part of the forcing function, on a
vibrating structure are of two kinds; constant with time, acting
as a prestress; and inertial loads varying as mass times
acceleration., Prestress loads exist as pressures, or dead loads,
or acceleration loads and remain constant or vary slowly with
time, Inertial loads can be varying because of changing velocity
(acceleration) or changing mass (as a rocket) or both.
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The terms for forced vibrations of beams carrying external
loads are given by

x = f(w, P, P, M, pg, % E, EI, GJ, KAG) (13)

Each of these terms has been previously scaled and no new similitude
requirements are needed. However, for launch vehicles the external
load P acting as a prestress either constant in time or varying time
can be examined in greater detail, The definition of P comes from
Newton's second law of motion so that

P = 3% (o¥v) (14)

To help establish the dimensionality of these terms, we take each of
them individually to show using basic MLT dimensions,

2

MLT -:rl- (ML_3) (L3) rt

)

and obviously after simple manipulation we have

-2

MLT™% = MLT2

Therefore p is unit mass density of a given volume V, v ig velocity,
and the product of pVv is changing with time. For dynamic simi-
litude from Equation 9a

giving for the right hand side of Equation 14

d 2 d
'a‘;; (o, V v) = 0y nza-;; (oprvp) (15)

The time rate of change of - momentum for the prototype must follow
Equation 15, 1If the mass remains constant then

d
ac (PV) = 0

and
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dvm 2 dv
Dmvm dtm I ) ppVb dtp (16)

And if we designate g% as acceleration a, then from Equation 16

a v

oo 2 92 P . 2 -1 -3
a B 5V Dy By By

P m m

or by combining terms the acceleration ratio becomes

[+

-1 -1

m
5 = 0y By mg (17)

P

This is an expected result when considering just the vibrating
beam, From Equation 5a

Puby = B BgP8,

Treating the g terms as acceleration terms and dividing by Pm

the results of Equation 17 are readily found from Equation 5a
above,

If, however, the mass term is varying and the velocity remains
constant, dv _ , then Equation 15 becomes
dt

d 2 d

Vm dt (pme) n1 L) Vp dt (ppr) (18)
m P

This describes the modeling for a system losing mass while

maintining a constant velocity, and for launch vehicles this does
not have much application,

Most useful form of the equation for extermal forces on a
rocket due to change of momentum is given by Equation 15 and the
modeling laws can be applied to 1t in many forms,

4,5 Loads From Fluids

From the study of fluid mechanics we obtain a list of variables
describing the physical quantities of gases. Not considering, at
this time, temperature effects the several variables are listed in
Table 4,1 using the engineering units and basic units,
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Table 4,1 Quantities and Dimensions for Fluids

Engineering | Basic
Quantity Symbol Units Units
Force P F b'l:l:..‘]T-2
Length L L
-1 ' -1
Velocity v LT LT
Unit Mass Density 0 L~ 472 M3
Dynamic Coefficient of n FL™ 2T VA
viscosity
Acceleration of Gravity g L'l‘-2 L'I‘-2
Speed of Sound c L'I.‘ml LT-1
Surface Tension a* FL-l MT-2

Nondimensional numbers have been created by combining the
quantities in Table 4,1, Similitude is achieved when the non-
dimensional number has the same numerical value for the model
and the prototype., See Ref, 3,6 for further discussion,

For fluid simulation where viscosity 1s important the
Reynolds' Number is scaled so that

vip vip
mmm _ _DppPP (18)
oy M,

Any combination of model velocity, length fluid density and
kinematic viscosity that produces the same value as the prototype
quantity satisfies this scaling requirement,

To scale the resulting forces from fluid flow such as drag

force the pressure coefficient relates force P to density, velocity
and length so that

P P
m P

2, 2
2
vam ' P

(19)
v 2 2
PP P

Drag forces can be separated into two components, one due to
viscosity (Reynolds' Number) and the other due to gravity. To

*Not to be confused with stress in Table 3,1,
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scale for gravity the Froude Number requires that

2 2
v v
% e ) (20)

When considering the effects of velocity in the sonic region or
supersonic regime the Mach Number is given by

2” |

2
- - (21)
P

For those fluids or scaling situations where surface tension
effects are important then Weber's Number defines a similitude
requirement, To satisfy this requirement

pm m ‘Q'm - ppvp 'Q'p ( 2 2)
g g
m P

Although arbitrary scale factors such as £ /% have not
been defined for this section they can be appli%d Pn the same
manner as for structures., Some of the forces P were not defined
in the previous sections, In a launch vehicle these loads can
come from many sources., When they occur as a result of actions
between a structure and a fluld then considering the three basic
dimensions of mass, length and time and by consistently modeling
so that an arbitrary but unique relation exists

and applying it to all physical quantities the model will give
information regarding the prototype,

4,6 Temperature Scaling

When the temperature, or the quantity of heat, becomes a
consideration for a prototype structure then other modeling laws
and dimensions are necessary. The mechanical equivalent of heat

PARRTIRN MARIETTA CORPORATION
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in basic units,

and energy establishes that a quantity of _heat has the dimensions
of work FL in engineering units and ML2T
Another dimension, temperature 6, and other definitions are

introduced to express these physical quantities, These are
given in Table 4,2
Table 4,2 Quantities and Dimensions
of Thermal Quantities
Engineering | Basic
Quantity Symbol Units Units
Temperature 6 ] 0
~1, -1 ~1 -3 =1
Heat Transfer Coefficient h FL 'T "¢ MT "8
Coefficient of Thermal k* FT-le-l MLT—3e-1
Conduction
Specific Heat c L%t 121721
Coefficient of Thermal 8 6t ot
Exp.,

Several scaling numbers have become associlated with heat

transfer in gases,

Grashof's Number =

Nusselt's Number

No Name

Praudtl's Number = Eu
k8

By using terms identified in Table 4.1 in
combination with the thermal quantities in Table 4.2 we have
from Refo 3'6

Another dimension, temperature 6, is introduced and is

treated the same as length, mass, or time,

scaling established for mechanical systems 1s simply extended from
three dimensions to four dimensions.

*k not to be confused with form factor k of kAG,
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4,7 Nonlinear Effects of Structures

Materials that are used to construct real structures and
model structures can and do exhibit nonlinear behaviors., Some of
the nonlinearities are exhibited by elastic and plastic behavior,
strain-rate sensititivity, damping characteristics, and other
phenomena observable on a macroscopic scale or in a microscopic
gnese, Generally when displacements are small compared to the
least dimension of a structure, when frequencies are low, and
when thermal effects are negligible, the nonlinearities are not
important.,

For those cases where nonlinearities are important scaling
is still possible if the nondimensionalized response of the
materials used for model and prototype can be plotted as the
same curve, For example, when the nondimensional stress strain
curves for model and prototype are the same curves, then the
deflections of the model will scale as the length scale ratio,
the forces will be changed by the length scale ratio squared, and
the moments will be affected as the length scale cubed.

The most important aspect of scaling is that a physical
phenomena is not dependent on the numerical magnitude used to
describe it, Physical laws when considered nondimensionally to
relate model and prototype are the same physical laws and are not
affected by size or dimension, all important physical quantities
being considered,
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5, SCALING OF SHELL STRUCIURES

Shells used for launch vehicle structures may be monocoque
construction of isotropic materials, orthotropic construction of
isotropic materials, orthotropic construction of composite
materials, or anisotropic construction of composite materials,
Scaling for shell structures will be limited to isotropic materials,
e.g, aluminum, titanium, magnesium and either monocoque (no
stiffening) or orthotropic (stiffeners, rings) comstruction,
Composite material or sandwich construction will not be considered
although the scaling requirements are based on the same principles
used for isotropic materials,

Shell theory assumes the shell material to be an artificial
substance with three moduli having infinite values and two
Poisson ratios equal to zero. Using the coordinate system in
Fig. 5.1 the several assumptions are given in Equation 1},

3 Shell Thickness Direction

~<. -~ Plane Tangent to Shell at
- Reference Surface

Fig. 5.1 Coordinate System for Shell Material

Using the directions identified in Fig, 5.1, the Hooke's
law for shell materials takes the form

11 = B8 ¥ Ejvosy (1

Ogy = EyVy.8; + gy

033 = 0

g
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T2 = G127,

This form of Hooke's law arises from the assumptions that

Ey=Gy3 = Gyy > (2)

Vig = Vo3 = 0

€3 % Y33 = Y3 = 0

These assumed values occur from the several hypothesis made
regarding shell behavior such as normals remaining normal, no
changes in shell wall thickness, small displacements, and thin
shells .

Although no material exists for which these assumptions
are valid most materials used for shell comstruction approximate,
sufficiently closely, this behavior., Model material for model
shells made of materials other than used for the prototype may
not be satisfactory if their properties are too different when
compared to these assumptions, When approximating the shell as
a beam with a hollow circular cross section, these considerations

are unnecessary. When studying shell behavior these assumptions are

required for tractable analytical solutioms, Comparisons between
experiment and theory are valid when both the test and the
analysis use the same rules for material behavior.

5,1 Monocoque Shells

Dynamic scaling requires comnsideration of the three basic
quantities of physical systems, mass, length, and time, These
may be converted to the engineering units of force, length, and
time, From previous developments (See Chapter 3) the three
arbitrary scale factors will be chosen as

n1 = T (3a)
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Em

n, = T (3b)
P
P

ny = == (3c)
P

From Equation 3 the engineering units of length (L), force (F),
and time (T) are modeled by using

Lm = nle (4a)
F =n2n F (4b)
m 1 27p

. 1/2 _ =1/2
Tm n, n, ny Tp (4c)

Free vibrations of shells are associated with a circular
frequency w, the dependent variable, Shell properties, material
properties, and external loads are independent variables. Symbols
and dimensions for these quantities are given in Table 3.1, A
functional relationship can be written such that

w=f(R, &, h, pgy E, v, Dy K, P, M,y q) (5)

A set of 7 terms for these variables can be established as
shown below, The dependent variable w is given by m and the
independent variables follow from T, o,

™= wﬂ,»\lz 6)
E

For the independent factors from Equation 5 and recalling
that L, E, and p have been chosen to define arbitrary scale
factors given by Equations 3 the remaining terms are

(7a)

] =t LS

(7b)

MRBRTIN MARIETTA CORPORAYTION
DENVER DIVISION



Sl MCR=68-87
- g X
774 o3 E (7¢)
175 = 1, Vm (7d)
D Je
- (7e)
pgR
1]'7 £ —-K__Z_ (7f)
pgR
T, = _P
8 s
E g2 (7g)
Ty = -1%; (7h)
EQ
=3
To ™ E (71)
Similitude requirements for Equations 7 to provide the
equality of model and prototype 7 terms can be expressed as
Tom = TrZp (8)
T = Tr3p
Mom ™ M0p

From the dimesnions of Table 3,1 and the relations expressed
in Equations 4 the model dimensions become from Equations 7a and

7b
Rm =n Rp (9a)
hm = n hp (9b)

Model material properties and gravity requirements are found
from Equations 7c and 7d
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-1 -1
g, =0y By Ny gp . (9¢)
Vo = Y% (9d)

Bending rigidity D and extensional rigidity K are scaled
as follows

3
Dm - nl n, Dp (9e)
Km = n, n, Kp 9f)

External loads, moments, and pressures and internal loads, moments,
and pressures are scaled for the model from corresponding prototype
quantities by

Pm =1n, n, Pp 9g)

M =n 3 n, M (Sh)
m 1 "27p

a4, =y 9, (91)

Equations 9a to 9i provide a working set of model requirements
to find the dynamic response of a shell structure. If Equation 9b
model thickness is scaled, then Equations 9e and 9f are satisfied
when modeling with similar materials, If the structure is unloaded
or lightly loaded, i1ts mass becomes important and 7, (Eq. 9¢)
must be considered. Masses other than the structural mass that
respond as the basic structure responds must also be scaled by
making Tym = T

4p*

Applied loads, shears, moments, torques and pressures are
made correct for the model by considering the modeling requirements
imposed by Equations 9g, 9h and 91,

Nonlinearities known to exist in the prototype can be scaled
into the model 1if the corresponding curves describing these non-
linearities, when drawn nondimensionally, are the same curve, An
example of this is the elastic-plastic behavior shown by the
stress-strain curve of a prototype material. If the nondimensional
stress—-strain curves for the modeling material and prototype
material are the same curve then the model will respond in a scaled
manner and will provide information about prototype response.
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From 7, of Equation 6 the dependent variable of interest
becomes for the model a frequency realted to the prototype by

-1 1/2 a -1/2 ®

s T 3 p (10)

For models made of the same material as the full scale
structure (n2 =n, = 1) the frequency relation is

For dissimilar materials the terms n, and n, for modulus and mass
density affect the model response. Equation 10 applies only if
the important modeling requirements outlined by Equation 9 are
fulfilled.

5.2 Stiffened Shells

Many launch vehicles are made of stiffened shells with
stringers running longitudinally. Combinations of rings and
stringers are also used and in some cases rings alone may be
used, Frequency response given by Equation 10 applies to the
stiffened shell when all T terms are scaled by Equation 9. For
replica modeling the rigidity terms K and D are properly scaled.

When replica modeling is not used, extensional and bending
rigidities can be scaled. Expressions for these rigidities for
stiffened shells are given in Table 5, When made nondimensional

by 7, and 7, and made equal for model and prototype, then stiffnesses

are scaled. Other variables must also be scaled as required,

In Table 5.1 subscripts x and ¢ refer to axial and circum=
ferential directions respectively. Spacing of stiffening
members is given by b, measured in the axial direction and b
measured circumferent}ally. Distance of the stiffener centet
of gravity from the reference surface (given by R) is given as
dimension c. All other terms are as defined in Table 3,1.
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6. SCALING OF LIQUID PROPELLANTS

The dynamic behavior of launch vehicle liquid propellants
is of considerable interest. At lift-off the propellants may
comprise as much as 907 of the vehicle mass. The free surface
of these propellants has a strong tendency to undergo large
amplitude motion due to excitations caused by the flight environ-
ment. Lateral accelerations arising from control surface deflections
may contribute to these motions,

With the development of large launch vehicles it has become
difficult to provide adequate separation of slosh frequencies, control
system frequencies and vehicle elastic frequencies. Knowledge of the
dynamic slosh characteristics, including the coupled slosh-structural
characteristics (e.g., the well known POGO phenomonon) is of vital
importance to loads and stability studies. An excellent treatment
of the dynamic behavior of liquids in moving containers can be
found in Reference 6.1.

Scale models can be used to study lateral sloshing, coupled
elastic~liquid oscillations., viscosity effects,compressibilityeffects,
cavitational and surface tension effects. Typically, any model is
designed for the simulation of some (but not all) of these phenomena.

A general dimensional analysis of liquid sloshing phenomenon is
developed (Section 6.1) for rigid and elastic tanks. Special limita-
tions on several types of dynamic simulation of liquids are established
(Section 6.2) and the results are presented in graphical form. These
graphs may be used by the analyst to establish the overall simulation
limitations 1f two or more liquid effects are considered simultaneously.
The results of Section 6.2 are an extension of the results of Reference
6.1.

6,1 Simulation of Lateral Propellant Sloshigg

The investigation of the sloshing motions of liquid propellants
in partially filled tanks is of importance to a complete dynamic analysis.
If the slosh frequency is considerably below the fundamental structural
frequency, slosh modes will couple with the flight control system and
may produce instability. Siosh frequencies approximately equal to
structural frequencies may cause considerable elastic-slosh coupling.
Correct simulation ot these coupled modes is essential to accurate
loads and stability studies.

Slosh modes can be suppressed to some extent through the use of"’
mechanical devices (e.g., baffles as discussed in Ref 6.2). It is
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important to evaluate these devices through analysis or test, A
mathematical approach 1s often not feasible due to the complexity of
the boundary conditions introduced by the suppressing devices. However,
the investigation of the problem through the use of suitably designed
model experiments (Ref 6.3 and 6.4) is feasible,

Simulation of slosh modes can be investigated for two general
conditions: uncoupled and coupled with elastic modes. The uncoupled
case can be considered when tank construction is such that the tank
stiffness gives rise to structural frequencies which are not in close
proximity to the lowest uncoupled slosh frequencies., On the other
hand, there are many instances where the coupling of liquid modes and
elastic tank modes becomes significant due to the proximity of the

-uncoupled natural frequencies.

The important bending frequencies of current launch vehicles are
usually less than 5 Hz and, as the important liquid surface modes in
cylindrical tanks also occur at low frequency, coupling between the
respective modes is likely. One of the few investigators to have con-
sidered this phenomenon is Miles (Ref 6.5). This author developed the
equations of motion for a circular cylindrical tank using a Lagranglan
formulation and established the frequency equation in terms of uncoupled
bending and sloshing frequencies and coupling coefficients. It was
concluded that the liquid effects are only significant in those cases
where the sloshing mass is a appreciable fraction of total mass. For
typical launch vehicle structures the sloshing mass can be omitted
from the calculation of bending frequencies and rigid-tank sloshing
frequencies can be used in the determination of the tank bending
characteristics. Results of an experimental investigation to confirm
the analysis of Reference 6.5 are presented in Reference 6.6.

A considerable amount of investigation has been devoted to the
coupling of propellant motions with elastic tank breathing vibrations
(e.g., Ref 6.7 and 6.8). An extensive summary discussion of these
efforts is presented in Reference 6.1.

6.1.1 Uncoupled Propellant Sloshing

The analysis of uncoupled lateral sloshing is based upon the
following assumptions:

a. Constant longitudinal acceleration,
b. Sloshing arises from small amplitude excitations caused by

either translational or rotational accelerations acting
normal to the flight path, :
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c., Surface tension forces are negligible when compared to
inertial and viscous forces,

d. Forces due to gas pressure are negligible,
e. Geometrical similarity between model and prototype.

Translational Excitation

A typical propellant tank subject to translational excitation
is shown in Figure 6.1.

/

L
SN <

a
/’Ii)’:l'"\
I
I
l

17 l%h
- azp \

X g ——
o]

Figure 6.1 Translational Excitation of Propellant Tank

The resultant liquid force on the tank walls, expressed in
functional form, is

R = f(a, 2:’ A, Uy Ts p)

where R = resultant liquid force on tank wall, F
a = longitudinal acceleration, L/T2
2 = characteristic length, L
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A = any length (e.g., tank diameter (d), liquid depth (h),
excitation amplitude (xb)), L

U = liquid viscosity, FT/L2

p = liquid density, FTZ/L4

T = excitation period, T.

Application of the dimensional analysis techniques of Chapter 3
yields four scaling parameters. These parameters are

o2, 4 2
'ﬁl-Rt/pl, Trz—aT/JL,
T, = plz/ux and T, = A2
3 ‘ 4 *

The T, term is equivalent to the Froude Number and the 7, term
is equivalént to the Reynolds Number. Complete dimensional s%milarity
is dictated by 7, where the parameter A may be replaced by any
desired physical dimension.

If the analysis is developed using the resulting liquid pressure
P as the dependent variable, the ﬂi term becomes

2, .2
m = PT / p%

which is a form of the Euler Number. The other non-dimensional terms
are unchanged.,

Rotational Excitation

The analysis i1s similar to that for translational excitation.
The accelerations are determined by the location of the rotational
axis and the amplitude of excitation.

The functional relationship becomes

M=f(a, 2, As Uy Ps T» ao)

where M = moment due to liquid pressure, F/L
A = any length (including location of rotational axis (b)), L
60 = excitation amplitude,

and the other variables are as defined previously.
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The five non~dimensional scaling relations are
2, .3 2 2

mo=MT/ L, m, = a1t /4 Ty = p& /uts
= AR and T. = 0 .

As previously, T, is equivalent to the Froude Number and 7, is
equivalent to th€ Reynolds Number. Dimensional similarity is
dictated by ﬂ&. Similarity of excitation amplitude follows from Mg«

The scaling relations for translational and rotational excita-
tion can be examined for two conditions:

a. Viscosity Neglected

If viscous fluid forces are assumed to be negligible, the
T, term becomes insignificant and the non-dimensional
staling relationship developed previously can be expressed

as
xm/kp =4/ %, =
ag/2, = n(t /)7,
Rm/Rp = n3(pm/pp)(am/ap),
R/B = nlp /o) (2 /a),
Mm/Mp = n? o,/ pp) (a / ap) )
and eom = eop

where the subscripts m and p refer to model and prototype,
respectively.

The first relation defines the geometric scale factor. The
second indicates that any prototype acceleration can be simu-
lated in a l-g test enviromment through a time scale adjustment.
The model-to-prototype frequency ratio, established by Tos is
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_ 1/2
wm/wp = [(am/ap)/nl .

The expressions for force, pressure and moment indicate
that the prototype fluid relations can be established
following selection of the model fluid.

b. Viscosity Included

The scaling relations are identical to those presented
above., 1In addition, the 1., term must be satisfied. This
relation can be written as

n= (vm/vp)z/B(ap/am)l/B

where V = U/p is the liquid kinematic viscosity, LZ/T.

This expression indicates that the length scale factor, n,
is affected by both the density and viscosity of the model
fluid. 1In order to investigate prototype accelerations at
scale factors different from unity, the modeling liquid
must have different properties than the prototype liquid.

6.1.2 Elastically Coupled Propellant Sloshing

The analysis of elastically coupled propellant sloshing is based
upon the assumptions (a) through (e) of Section 6.1.1 but the complexity
of the problem is magnified as the elastic structural tank properties
must now be considered. The resultant liquid force acting on the
tank walls, expressed as a function of the independent variables, is

R=1£f(a, 2, A» vs V', \)]'D’ GJ, KX’ Bxy, B _, EI, 1)

zZ

where R = resultant liquid force on tank wall, F
a = longitudinal acceleration, L/T2

%4 = characteristic length, L

A = any length (e.g., tank diameter (d), liquid depth (h),
excitation amplitude (xb)), L

Vv = liquid kinematic viscosity, L2[T
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v' = Poisson's ratio,

V! = Poisson's ratio for bending,
GJ = tank torsional stiffness, FL2

K = tank extensional stiffness, F/L

= tank in-plane shear stiffness, F/L

B_ = tank transverse shear stiffness, F/L
EI = tank bending stiffness, FL2

T = excitation period, T.

The non—dimensional scaling parameters, developed in accordance
with the techniques established in Chapter 3, are

™y o= R»z TZ/ZZEI, T, = aTZ/l, Ty = A Ly
3 i 2 .
™, = le /EI, Ty = v/, Te = V'
- 1 = =
Ty = Vi» Mg GJ/EI, Ty Bz/Kx’
and Tig = Bxy/Kx'

Note that m,, T, and T, are similar to the scaling terms derived for
Zopel ¢
uncoupled propellant sloshing.

These scaling relations can be examined for two conditions:

a. Viscosity Neglected

If viscous fluid forces are assumed to be negligible the
scaling relations which are dependent upon the length scale
factor become

Xm/Xp = Km/lp = n,
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b.
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stm/ap = n('rp/ Tm)z,
3
and (Kx/EI)m/ (KK/EI)p =1/n".

The first of these defines the model-to-prototype scale

factor. The second indicates that any prototype acceleration

can be simulated with an appropriate time scale. The
frequency ratio, established by this expression is

1/2
wm[wp = [(am/ap)/n] .

Other scaling relationships, derived from 7

s Mo T
and ﬂlO’ are 4 8" 9

3
(Bxy/EI)m[ (Bxy/EI) p ™ 1/n7,
3
(BZ/EI)m/ (Bz‘/EI)p = 1/n",
3
(KX/GJ)m/(KX/GJ)P = 1/n".
The similarity requirements imposed by these other scaling
equalities may be difficult to maintain when small scale
models are fabricated. The inaccuracy of scaled skin

thicknessess, due primarily to tolerance limitations, may
cause significant deviations in these parameters.

Viscosity Included

Additional scaling relationships arise if wviscous fluid
forces are considered. The expression developed from ms is

n = (/) @ rant?,

which is identical to the scaling relationship of Section
6.1.1. The expression for fluid forces,

.2
R,/R, = L(ED, /& _1/n%,

is established by m and the above relation.

MARTIN MARIETTA CORPORATION
DENVER DIVISION



MCR-68-87 6-9

6.2 General Limitations on Liquid Scaling

Density simulation or the scaling of slosh effects in a rigid,
uncoupled tank (Section 6.1.1) presents no difficulties. Scaling
of liquid propellants to other conditions may impose limitations on
physically feasible models. Typical scaling requirements include
gravitational-viscosity scaling, gravitational-compressibility
scaling, gravitational-cavitation scaling and gravitational-surface
tension scaling.

The non—dimensional scaling relations for each of the above
cases can be established through examination of the functiomnal
relationship

f(AP, L, a, Vs C, Ps Ty Olg’ 8) =0

vhere AP = P - P (p = gas pressure above liquid,
gas vapor = gas 2

PVapor = vapor pressure of liquid), F/L
£ = characteristic length, L
a = longitudinal tank acceleration, L/‘I‘2
v = liquid kinematic viscosity, LZ/T
¢ = velocity of sound in liquid, L/T
. . 2, 4
p = liquid density, FT /L
r = radius of meniscus in equivalent capillary tube, L
0 = liquid gas surface tension, F/L
g = acceleration of gravity, L/T2

6 = contact angle between liquid and tank wall.

It is assumed that the solid-liquid and solid~gas interface effects
are negligible.

Application of the dimensional analysis techniques of Chapter 3
yields six scaling parameters. These parameters are

[

™

£3a/v2, M, = czlal, i

5 AP/pal,

3

- = cor -
m, = r/%, T = PgT /o and Te = 8.
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The scaling requirements imposed by these parameters and the
limitations on scaling of liquids in a rigid tank are discussed in
Sections 6.2.1 through 6.2.5. Gravitational-density scaling of
liquids in elastic tanks is discussed in Section 6.2.6.

6.2.1 Gravitational-Viscosity Scaling

The significant scaling parameter for gravitationmal-viscosity
simulation is

_ 93
ﬂl = % a/\;.

A bar chart which compares the kinematic viscosities of typical
propellents and possible model liquids is presented in Figure 6.2.
The kinematic viscosities are shown for the temperature ranges which
may be experienced during launch vehicle boost flight.

Nitrogen

Kerosene

Prototype

Kinematic Viscosity, cm®/sec

Methylene Chloride:
Bromine

Model

0.002 0.005 0.01 0.02

Figure 6.2 Kinematic Viscosity, Typical Missile Propellant and Model Liquids
(Based on Fig. 5.4 and 5.5, Ref 6.1)
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The required model-to~prototype scaling can be established
from m,. This scaling is

1
- )
% ja /v 2 . 2 3a /v~
m m m P PP
.3 .1/2
or v, = (n ar)
= /\ = = ! -
where v Vm‘ap’ n Qm/lp, a_ am/ap

and the subscripts m and p refer to model and prototype, respectively.

The relation between the these parameters is presented in
Figure 6.3.
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Figure 6.3 Simulation Chart: Gravitational-Viscosity Scaling
(Based on Fig. 5.6, Ref 6.1)
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The difficulty which arises if gravitational-viscosity simulation
of cryogenic propellants is attempted becomes evident, The kinematic
viscosity ratio must be approximately equal to or greater than unity
which makes 1t virtually impossible to preserve the required scaling

parameters, for typical boost acceleration ranges, with model scale
factors less than unity.

6.2.2 Gravitational-Compressibility Scaling

The controlling scaling parameter for gravitational-compressibility

scaling is
2
T, = ¢ /ak.
The required model-to-prototype scaling condition, established

by m,, 1is

c 2/a g =c 2/a L

m '  mm Pp PP

_ 1/2
or c = (na)
where c_=c /c_.
r m p

The relation between these three parameters is presented in
Figure 6.4. As typical wvalues of the sonic velocity ratio will lie
in the range 1/4 < c_ < 4, gravitational-compressibility propellant
scaling for typical boost acceleration ranges 1s possible for a
limited range of desirable model scale factors. The simulation
of nitrogen tetroxide or LOX is difficult (at desirable scale
factors) as the sonic velocity ratio, assuming the use of a common
modeling liquid, will not be much less than unity,

6.2,3 Gravitational-Cavitation Scaling

The scaling parameter for gravitational-cavitation scaling is

m, = AP/palk,
3
This scaling requirement can be satisfied, for any length
scale and prototype liquid, by adjusting the gas pressure (assuming
that the absolute gas pressure is not determined by any other scaling
parameter). The ratio AP/p, for typical model Iiquids and an assumed
model gas pressure of one atmosphere, will lie between 0.6 and 1.4.

The required model-to-prototype scaling condition, established by T is

3,
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R/p), /2,8 = (AR/0) [a %

or (AP/p)r na_

where (AP/p)r (AP/p)m/(AP/p)p.

Length Scale, n

 Boost Acceleration Range
| Simulation Range

a4y,

N Acceleration Ratio, a
10N 100 1000

0.001 0.01

(4
&

0.1
V
0
<
Desirable Model L; 7
Range 0.01

o
N\

A

)

Figure 6.4 Simulation Charts: Gravitational-Compressibility Scaling
(Based on Fig. 5.7, Ref 6.1)
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The relation between these three parameters is presented in
Figure 6.5.
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0.001 0.
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Figure 6.5 Simulation Chart: Gravitational-Cavitation Scaling
(Based on Fig, 5.9, Ref 6.1)

Simulation (at atmospheric pressure) of a cryogenic prototype
fluid or a fluid with a very high vapor pressure does not appear to
be feasible for convenient model scale factors. Boost acceleration
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simulation will require model gas pressures to be reduced below
atmospheric. Gravitational—-cavitation effects in a low-g
environment can be simulated with small scale models and
atmospheric gas pressures.

6.2.4 Gravitational-Surface Tension Scaling

Gravitational-surface tension scaling is Eontrolled M, s T
and T, of Section 6.2, T_, a variation of the Bond Number, can
be combined with ﬂz to yield

Trs* = pglz/O'.

The required model-to-prototype scaling, expressed in terms of the
kinematic surface temsion, ¢ = o/p, is,

2 2
gmlm /¢m N gPZP /¢P

or 2
=n a
¢r r

where ¢r = ¢m/¢p and g /g = am/ap = a ,

The relation between these parameters is presented in Figure 6.6.
Velues of ¢_, for typical prototype propellants (e.g., kerosene, LOX)
and model fiuids will lie between 0.1 and 10. It is obvious that
surface tension scaling with desirable size models at small accelera-
tion ratios is not feasible. The simulation of low gravity surface
tension effects is possible with small scale models in a 1l-g test
enviromment.

The scaling relation imposed by Te»

is probably insignificant for dynamic simulation as the contact angle
influences interface area variations in the energy equations as cos 6.
Nevertheless, -this requirement eliminates the possibility of simulating
a wetting fluid with a non-wetting fluid and vice versa,

The discussion of Sections 6.2.1 through 6.2.4 has been restricted
to the simulation of inertial effects with any of four of the more impor-
tant liquid effects. The results of these sections may be used concurrently
if the analyst wishes to consider the simultaneous simulation of several
of these effects.
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Figure 6.6 Simulation Chart: Gravitational-Surface Tension Scaling

(Based on Fig. 5.10, Ref 6.1)

6.2.5 Relative Importance of Capillary and Gravitational Effects

The dynamic characteristics of a gas—liquid syétem may be
influenced by several forces (e.g., viscous forces, capillary forces,
body forces) but often all but one of these forces can be regarded as

MARTIN MARIETTA CORPORATION
DENVER DIVISION



MCR~68-87 6-17

negligible. The hydrodynamic behavior of the system can be
separated into approximate regimes through examination of several
dimensionless parameters.

The Weber Number, We = pVZQ/O, defines an estimate of the ratio
of inertial to capillary forces. This parameter appears (in a
slightly different form) in Section 6.2.4 as the non-dimensional
scaling relation m_*, Note that for We much greater than unity the
caplllary forces are insignificant. For We much less than unity the
opposite is true,

The Froude Number, Fr = Vz/gz, relates the inertial forces to
the body forces. It is evident that body forces play an important
role in the fluid dynamics for values of Fr much less than unity.

The regimes defined by the Weber Number, Froude Number and Bond
Number (Bo = We/Fr) are indicated in Figure 6.7 taken from
Reference 6.1,

-

We

_Inertial 100

Regime N

RIMRNVANNNNY 10 4%

0.01 0.1 10 AV 1?0
0.1 Gravitational
7777 N\ Regime
Capillary
Regime 0.01

;ﬂ N\

Figure 6.7 Hydrodynamic Regimes (See Fig. 11.5, Ref 6.1)

This figure gives no indication of the relative importance of viscous
effects and the effect of these forces must be established separately.
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Characteristic Length, cm

t = 1000 sec ///’ Bo > 1
e N A LS

An order-of-magnitude estimate of the time required for liquid
reorientation following the transition between two hydrostatic regimes
can be obtained through examination of the "characteristic response
time." An analysis which develops expressions for these times is

presented in Section 11.4 of Reference 6.1. The characteristics times
are determined to be

t = (,(2,/g)l/2 for the gravity dominated regime

and t = (p23/0)1/2 for the capillary dominated regime.

Figure 6.8 indicates characteristic response times for the various
hydrostatic regimes.

\& 4 Gravity
t = 100 sec Dominated
100 ! Regime
i
t = 10.0 sec \4 /
10 1 S s

t = 1.0 sec \f<’ ;
I t=+1/g
1t = 0.1 sec \

0.1 Capillary Dominated Regime \\
t = /pi3/o
10”8 107 10”4 1072 1 100

Acceleration, g

Figure 6.8 Characteristic Response Times (Based on Fig. 11.6, Ref 6.1)

MARTIN MARIETTA CORPORATION
DENVER DIVISION



MCR~-68-87 6~19

6.2.6 Elastic—Gravitational-Density Scaling

The simulation of an elastic launch vehicle structure containing
a sloshing liquid has been developed in Chapter 4 where it was assumed
that significant coupling exists between the slosh modes and the beam-
like structural modes. The controlling scaling parameters, established
in Chapter 4, are

it =m£4w2/EI, 'n'2 = Zw?'/a and m, = 99'2/m

1 3

where m = mass/unit length, FTZ/L2
% = characteristic length, L
w = frequency, 1/T
El = beam stiffness, FL2
a = acceleration, L/T2

p = liquid density, FT?'/L4

and geometrical structural similarity is required.

The acceleration ratio, using the subscript r to denote model-
to-prototype ratios, is
3

a = (EI)r/mrn

where n = Zf =%m/2 . The mass ratio, due to the assumption that the
ratio of sloshing B non-sloshing masses be identical for model and
prototype, is

and the acceleration ratio then becomes

a 5
a = (EI)r/prn

Replica scaling requires geometric similarity and idential
materials. This implies that E =1, I = n4 and Pr = 1 so that the
acceleration ratio becomes
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a = 1/n

which clearly indicates the impossibility of modeling the boost
acceleration phase with small scale replica models. However, the
possibility of using dissimilar materials must not be precluded
although tank geometric similarity is always required to preserve
adequate slosh simulation. TIf it is assumed that

I =4 3t = n3t ’
r r r r

where tr defines the ratio of model~to-prototype tank wall thickness,
the acceéleration ratio becomes

2
a_ = Ertr/prn

A simulation chart in terms of the parameter Q_ = E t_/P_is
r rr r
presented in Figure 6.9,

=
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Figure 6.9 Simulation Chart: Elastic-Gravitational-Density Scaling
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As typical model sizes and boost phase accelerations yield
values of QE ranging from approximately 0.03 to 0.002, the
applicability of metal models is limited. The liquid density ratio
(unless mercury is used as the model liquid) cannot exceed about
2.0; the elastic modulus for aluminum prototype and magnesium model
would be 0.6 and a thickness ratio of 0.1 would bé required to
achieve Qr = 0,03. This ratio of tank wall thicknesses may create
seriow manufacturing, assembly and handling problems. To achieve
lower values of Q_ requires the use of plastics in model construction
and/or the use ofrmercury as the model liquid.

6.3 Simulation of Non—-Linear Longitudinal Effects

The effect of longitudinal excitations upon liquids depends to
a great extent upon the amplitude and the frequency of the excita~-
tions. At relatively low frequencies the free surface of the liquid
may respond in a large amplitude standing wave with a frequency
equal to one-half the excitation frequency. At high frequencies the
liquid amplitude is diminished but the waves may disintegrate and
generate a low frequency standing wave of large amplitude. At very
high wvibration input levels small vapor bubbles can become
entrapped in the liquid. These bubbles can achieve negative
buoyancy and sink to the tank bottom.

A historical survey and a summary of analyses and conclusions
pertalning to these non-linear effects has been presented by
Abramson (Ref 6.1).

6.3.1 Subharmonic, Superharmonic and Other Non-Linear Excitation

Free surface standing waves are generated when a cylindrical
tank containing a liquid is forced to oscillate vertically. The
primary liquid response occurs at one~half the excitation frequency
and the liquid motion is usually identified as the one~half sub-
harmonic response. Other response modes may occur at the excitation
frequency as well as at superharmonic frequencies. This phenomencn
is essentially non~linear and is a suitable area for simulation
studies.

The functional relationship between liquid pressure and other
independent variables in an assumed rigid tank is

P=£(g, A ps 0, 2)

liquid pressure at depth d, F/L2

]

where P

g = steady state tank acceleration, L/T2
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A = any length (e.g., excitation amplitude (xb),
radius of tank (R), liquid depth (d)), L

P = liquid density, FTZ/L4
. W= excitation frequency, 1/T
% = characteristic length, L.

Application of the principles of dimensional analysis yields
three non—dimensional scaling relations. These relations are

m o= u;zx/g, T, = P/l and Ty = M2

The first term, when written as

*

™

2
= 0 xb/g
defines the dynamic—to-static acceleration ratio. W, may be

; 2
expressed as

TT*::
9 P/pgd

to define the dynamic~to-static pressure ratio. Complete geometric
similarity is dictated by WB.

6.3.2 Bubble Cluster Formation

Another non-linear phenomenon associated with wvertical tank
excitations is the formation of bubble clusters. These clusters arise
due tc the apparent negative buoyancy of small gas bubbles which,
above some limiting oscillatory acceleration level, become trapped
in the liquid. This phenomenon results in the periodic growth and
destruction of gas bubble clusters below the liquid surface.

The functional relationship between liquid pressure and other
variables is

P=f(g, A p, W &, ¢, Po)

sonic velocity in liquid-bubble mixture, L/T

where c

P
o]

gas pressure, F/L2

and the other variables are as defined in Section 6.3.1.
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The five scaling relations developed from the above are

'ITl = w}\/c, '"2 = )\/2, '”3 = Po/pggﬂ
2
M, =W Mg and Ty = P/pgl.
Ty when expressed as
%
moo= wd/c,

defines a dimensionless pressure wave length. T, can be written
as

*
Ty Po/pgd
to define the gas—to-liquid static pressure ratio and T, as
%

to define liquid dynamic-~to-static pressure ratio. The dynamic~to-
static acceleration ratio follows from

% = wzx /
4 o' &

and geometric similarity is dictated by Moo The ratio of gas to
liquid volumes

Te = Vg/vﬂ

follows from Wz.
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7, DISTORTED SCALING OF LAUNCH VEHICLE STRUCTIURES

Stiffened cylindrical and conical shells are typical of tank
walls, interstage adapters and fairings. Proper simulation of their
dynamic characteristics is required if accurate simulation of the
overall launch vehicle dynamic characteristics is to be realized.
Frequently, the thin skins that form a major portion of these
structures preclude the use of replica scaling (Chapter 9). Replace-
ment of the prototype shell structure with an equivalent distorted
model is then necessary.

There are several approaches to the analysis of shell configura-
tions. Classical solutions are available for most axisymmetric shell
geometries (e.g., Ref 7.1) but many practical problems involve
unsymmetrical or stiffened shells for which classical solutions are not
readily available. Due to the complexity of the mathematical formula-
tion, stiffened cylinders and cones are generally investigated through
the use of finite element techniques. These techniques idealize the
actual shell and stiffeners as structural systems of plates and beams
having equivalent stiffness and mass., Application of these methods
to symmetrically and unsymmetrically stiffened cylinders and to
symmetrically stiffened cones is presented in Reference 7.2.

A somewhat analogous method of distorted shell modeling which
appears to be applicable to typical launch vehicle structures is
truss—ring modeling. This technique differs from that outlined in
Reference 7.2 in that the shell is replaced by truss-ring modules
consisting of transverse frames connected by a framework of axially
loaded bars. Application of these methods to the dynamic modeling
of shells is discussed in Section 7.1. Simulation of orthotropic
cylinders using reinforced plastic models is discussed in Section 7.2.

7.1 Truss-=Ring Modeling of Cylindrical Shells

The cylindrical shell considered here is a continuous three~
dimensional skin structure. It is proposed that the shell be
suitably divided into a number of units, each unit consisting of a
number of segments. Therefore, the entire cylindrical shell can be
considered as an assemblage of a finite number of segments,

The extremely thin skin gages which may result from replica
scaling dictate that the cylindrical units be simulated with a distorted
model. The model suggested to represent the continuous elastic
properties of a typical cylindrical unit is defined as a "module."
This module (Fig. 7.1) consists of an elastic ring and several
axially stressed bars. The bars are equally spaced about the ring
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circumference and are singly connected at each end by frictionless
pin joints., These joints attach to the module ring on one side and
to the ring of the adjacent module on the other side. Note that
the geometrical arrangement of the truss bars must be symmetrical

about any ring diameter.

Truss Bar
Elastic
Ring

Figure 7.1 Truss-Ring Module

The proposed module must satisfy certain preassigned static and
dynamic conditions. The elastic ring will simulate the radial
effects while the bars are assumed to take only axial forces. The
combination of truss and connecting ring provides the required overall
simulation of longitudinal, lateral and torsional stiffnesses. The
entire cylindrical shell may be simulated by a number of these modules,
As the bars are pin-connected, the truss between adjacent rings forms a
discrete system. Thus, the assemblage of the several modules is
precisely an assemblage of discrete units and the entire truss-ring

modeling analysis can be deemed to be analogous to a finite element
approach,

The following sections detail the equivalent longitudinal,
torsional, bending and lateral stiffnesses of a module. Buckling
simulation is not considered in this analysis, The simulation of
shell buckling characteristics is a logical extension to these
analyses,
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7.1.1 Geometry of Module Components

A typical module (Fig. 7.2) consists of an elastic ring and a
number of pin—-connected bars.

Pin Joint

Ring

Truss Rod

S

Figure 7,2 Geometry of Module Element

The number of joints attached to a ring is denoted by n and therefore
the number of bars is equal to 2n. Geometrical symmetry dictates
that all bars have identical length.

The notation used in the subsequent analyses of module stiffnesses

is:
R = radius of ring centerline
n = number of joints on one side of ring,
d = longitudinal distance Eetween ring centerlines,
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length of truss bar, 2% - a%+ d2,

o
1]

Q
1

- -n'/n,

<
i

cos T(a/2),

a = 2R sin (0/2).

A set of x, y, z axes are employed such that the x-axls defines
the longitudinal module direction and the y and z axes define the
lateral directions (Fig. 7.2). The axial bar force deviates from the

module longitudinal axis by the angle © and may therefore be decomposed

into x, y and z components for the individual stiffness analyses.

7.1.2 Longitudinal Stiffness of a Module

The longitudinal module stiffness is defined as the longitudinal
force required to produce unit longitudinal module deformation. The
connecting rings are assumed rigid,

The length of a typical rod, expressed in terms of the module
length d and chord distance between joints a, is

2% - d2 + az. ¢H)

The relationship between the variation in rod length 6% with
change in module length 6d can be obtained from the differentiation
of Equation 1 and is

8% = (d/%) & (2)

The assumption of a rigid ring dictates that the dimension a remain
constant. Assuming that the deformation is within the elastic

range so that Hooke's Law is applicable allows the axial rod force to
be expressed as

F, o= k(8) = k(d/%) & (3)

where the axial stiffness of an individual rod is
k = AE/%. (4)

It is to be noted that no subscript is used in Equation 4 as the
rod area A, length % and material elasticity E are assumed identical
for all rods.
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The longitudinal component F, of the axial rod force can be
computed from Equation 3 and is

2
Fix = Fi(dll) = k(d/2)" é&d. (5)

Each module consists of 2n rods and the total longitudinal module
force is :

F_ = 2nF, = 20k(d/%)% &d. 6) "

ix

The longitudinal module stiffness, expressed in terms of the rod
stiffness and the module geometry, is

ky = B /68d = 20k (d/2)2. 1)

In model analysis it is convenient to employ the concept of
an equivalent elastic parameter. For longitudinal extension the
equivalent longitudinal elasticity AE of a module can be defined
as

B =1ia-= 2nAE(d/2)>. (8)

Note that no forces but the longitudinal resultant force of
Equation 6 are required for unit longitudinal module deformation.
This is a consequence of the assumptions of rigid ring and module
symmetry. As the applied force and resulting deformation act in
the same direction, the longitudinal stiffness is defined as a
direct stiffness. The lateral components of the axial rod forces
are mutually cancelled due to the symmetrical connections of truss
loads to ring joints and no cross-stiffness terms exist.

7.1.3 Torsional Stiffness of a Module

The torsional module stiffness is provided by the axial tension
and compression of the truss rods. Again it is assumed that the
ring is rigid so that only a torque is required to produce twisting
deformation. The torsional stiffness is defined as the torque
required for unit twist angle and can be derived by rotating the
rigid ring about the longitudinal axis through the angle 66. The
pin-joint attached at the ring circumference will travel an arc
distance 6a (Fig. 7.3) where

Sa = R(89). 9)
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a/2—\ F, (Projection
Direction)

Truss Rod 4 _&_

(a)

. Tension
Compression

()

Figure 7,3 Torsional Displacement of Truss Triangle

Since the change in rod length 82 is a function of §a and the module
length d is invarient, the differentiation of Equation 1 yields

84= R(a/2) &6, (10)

The axial rod force Fi’ assuming that Hooke's Law is applicable, is

Fi = k(d2) = kR(a/%) &6 (11)

where k is as defined in Equation 4. This force can be decomposed
into two componentsy one in the longitudinal direction and the other
in the plane of the ring. The latter, which produces a twisting
moment about the center of the ring (Fig. 7.3) can be expressed as
2
Fia Fi(a/Q) kR(g/R) é0. (12)
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The twisting moment Ti developed by this force is

Ti = FiaR cos (0/2) = k(Ra/JL)2 cos (0/2)66, (13)

There are two rods associated with each pin joint; omne in
compression, the other in tension. The longitudinal components of
the two rod forces are mutually cancelled but the in-plane components
F . 2re equal in magnitude and act in the same projection directilon,
Hence, the total twisting moment T is

T = 2n Ti = an(aR/Q')2 cos (0/2)68, (14)

and the torsional stiffness is

kp = T/86 = znk(aR/IL)2 cos (0./2). (15)

The equivalent torsional elasticity is

GJ = kyd = 2nAE(d/£)(aR/2)2 cos (0/2), (16)

The cancellation of the longitudinal rod force components at
an individual joint implies that the torsional stiffness is
independent of the longitudinal stiffness. Due to the assumed
symmetry of the rods, the twisting force components provide neither
sectional lateral shear or bending deformations. The torsional
stiffness is therefore a direct stiffness.

7.1.4 Bending Stiffness of a Module

The bending stiffness is defined as the bending moment required
to produce a unit ring rotation about a diametric axis (Fig. 7.4a),
The ring is assumed to be rigid. The influence of rod forces will be
discussed in a later section.

The truss rods are assumed to be arranged symmetrically about
any diameter and it follows that two neutral axis positions must be
considered. The bending neutral axis may eilther pass through the
joints (Fig. 7.4b) or lie between the joints (Fig. 7.4c).

In order to establish the moment required to produce 6¢ it is
necessary to consider the axial deformation of the truss rods. Let
the joints be numbered counterclockwise as shown in Figure 7.4b.
The initial joint is defined by the angle d and the angle between
adjacent joints is 20, The jth joint is thén defined by the angle

Bj = 2j0 - o 17)
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where o = 0 if the neutral axis is as shown in Figure 7.4b and
o = 0 if the neutral axis is as shown in Figure 7.4c. The
d¥stance of the jth joint from the neutral axis is

=R sin B, = R sin (2jo - o ) 18
v j (23 o) (18)
and the longitudinal displacement xj is
= 8¢. 19
Xy =7y ¢ 19

It follows that the axial rod deformation at the jth joint is

8%, =
j Yj(d/2)5¢ (20)

and the axial rod force, assuming a linear elastic material, is

F, =k, = d/L) ¢ 21
3 3 kyj( /%) 8¢ (21)
where k is as defined in Equation 4, The longitudinal component
of F, is
. 2
F, =F. (d = ky,(d/% 22
gz = B340 = ky, (@07 ¢ (22)

and, as there are two identical componénts at the jth joint,
the total longitudinal joint force is

2
Zij = 2kyj(d/2) 8. (23)
/,
8¢
y \
Truss Rod’/¢ M
jth Joint A Ring
/
Y, \
20 (2)
2ja - o
1st Joint o

(b)

Neutral Axis

———— —— —

(é) %

Figure 7.4 Bending Displacement of Truss-Ring Module
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The bending moment about the neutral axis produced by the total
joint force can be expressed as

- 2
Mj 2ijyj 2k(yjd/2) 8¢ (24)
and the total moment is
n n/2 n/2
=N - - 2 2
M = M, = 2 Z M, = 4k@/D) [Z 34 ] 56
j=1 =1 =1
n/2
= 4k(Rd/2)Z [Z sin® (290 - oco)] 8¢, (25)
j=1

The sum may be taken over half the circumference because the moments
produced by the joint forces are symmetric about the neutral axis.

The bending stiffness is

. n/2
Ky = M/6¢ = 4k R/ 2)2 Z sin®(2ja - a) (26)
j=1

and the equivalent bending elasticity can be expressed as

n/2
5 = kd = GAE(4/0) (Rd/ 2)2 Z sin®(2ja - a) . 27)
=1

EI

The bending stiffness is a direct stiffness., However, it
should be noted that this bending stiffness couples with a lateral
cross-stiffness as a lateral force 1s required to prevent lateral
ring displacement under the influence of the bending moment.

The formulation of the lateral cross-stiffness is omitted.

7.1.5 Lateral Stiffness of a Module

The lateral stiffness is defined as the lateral ring force required
to produce unit lateral displacement. All other displacements are zero
and a rigid ring is assumed.
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Consider the half circular ring and connecting joints shown in
Figure 7.5.

Figure 7.5 Lateral Displacement of Truss-Ring Module

The ith joint attaches to the ring and the jth joint attaches to
the adjacent ring. It is evident that the elongation of the ith
bar due to lateral displacement, Sy, is

Gai = 8y cos (Bi - 0f/2) (28)

and the compression of the jth bar is

Sa, = &y cos (B, - 0/2), (29)

3 i

If the truss rods and joints are numbered as shown in Figure 7.5,
either Equation 28 O Equation 29 may be used to express individual
rod deformation provided that B is restricted to

0<B < 72 (30)
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The undeformed rod length has been given previously (Equation 1).
As 1t is assumed that the module length d is held fixed, differentia-
tion of Equation 1 yields

22621 = 2a6ai or 6!6i = (a/f) cos (Bi - o/2)dy. (31)

The axial bar force, assuming that the deformation is within the
elastic range so that Hooke's Law is applicable, is

F, =k 8% = k(a/ %) cos 8y - a/2) Sy (32)

where k is as defined in Equation 4. This force can be decomposed
into two components; one in the longitudinal direction and the other
along the projection direction (Fig. 7.5). This latter component is

- - 2 -
Foo= Fi(a/ﬁb = k(a/%)“ cos (Bi a/2) oy, (33)
The lateral component of Fia is then
_ _ - 2 2 _ ,
Fiy = Fia cos (Bi 0/2) = k(a/2)” cos (Bi a/2) Sy (34)

and the total lateral force, determined by summing the rod forces
over the quarter-circle defined by Equation 30, is

n/2 n/2
2 2
= = R, -
Fy 4 E Fiy 4k(a/ ) [ E cos (Bi a/Z{] Sy. (35)
i=1 i=1
The lateral stiffness can now be expressed as
n/2
k= E /0 = 4k(a/2)? 2 cos” (B, - a/2) (36)
i=1

and the equivalent lateral elasticity as

n/2

B, = k,d = GAE@/D) @/ D) cos” B, -a/2) . @)
i=1

The lateral stiffness is a direct stiffness. However, it should

be noted that this lateral stiffness couples with a bending cross-
stiffness as a bending moment is required to prevent rotational
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ring displacement under the influence of the lateral force. The
formulation of the bending cross-stiffness is omitted.

7.1.6 Coupling Between Circumferential and Longitudinal
Deformation '

The analysis of module longitudinal stiffness (Section 7.1.2)
is based upon the assumption that the truss rings are rigid. If
the ring is considered to be elastic the effect of the axial rod
force components which lie in the plane of a truss ring must be
considered.

Consider a module subjected to a longitudinal force F. The
longitudinal force component in an individual rod is

Fix = F/2n (38)

and the component along a chord projection in the ring plane is

Fia = (F/2n) (a/d). (39)

This force component can be further decomposed into two components.
One of these components is tangential to the ring; the other is in
the radial direction. The tangential components of two rods which
connect at a single joint are mutually cancelled but the radial
components introduce circumferential deformation (Figure 7.6a).

The radial force component in a individual rod is

Fir = Fia sin (@/2) = (F/2n)(a/d) sin (a/2) (40)

and it follows that the total radial force acting on the elastic
ring can be expressed as

Fr = ZnFir

= F(a/d) sin (@/2). 41
This resultant force can be approximated as a distributed

compressive force acting about the circumference of the ring if

the number of truss rods is large or the chord projection length

is small. This approximate uniform force per unit length about the

circumference is equal to

Pr = Fr/ZWR = (F/2mR)(a/d) sin (0/2). (42)
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(b)

(a) ~.

Figure 7.6 Circumferential-Longitudinal Coupling

For a uniform thin ring the circumferential force F (Fig. 7.6b) 1is
obviously equal to

F
c

PR = (F/2m) (a/d) sin (0/2) (43)
and the unit circumferential strain in the ring can be expressed as

€, = FC/ArEr = (F/ZﬂArEr)(a/d)-sin (a/2) (44)

where E and Ar define the ring elasticity and cross-sectional area.
This stfain shduld be equivalent to the circumferential strain of the
simulated shell.

The change in radius, AR, is equal to the total circumferential
deformation divided by 2m, or

AR = Z'ITREC/ZTF & Rec. (45)
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Therefore, the unit radial strain (which is equal to AR divided
by the undeformed radius) is

e =MR/R=¢€ . (46)
r c

The unit longitudinal module strain, based upon the equivalent
longitudinal module elasticity (Section 7.1.2) can be expressed as

e, = F/AE = F/[2n(d/ 23am)] (47)

where AE is defined in Equation 8 and AE defines the elasticity of
an individual truss rod.

It should be noted that these results are based upon the
asgumption that there is a large number of truss bars so that the
concentrated radial joint forces can be approximated by a uniformly
distributed force. The concepts presented here are also applicable
to other force components such as those which lead to bending and
to lateral displacements. The extension of the analysis to include
these effects is omitted here.

7.1.7 Circumferential Bending Stiffness

Proper simulation of the shell ring modes requires the simulation
of circumferential bending stiffness. The bending stiffness of the
rings can be expressed as

E I =4dD

rr w (48)
where d = longitudinal distance between ring centerlines, and
Dw = bending stiffness of a circumferential strip of width w

for the prototype shell.

7,1.8 Computer Program

Appendix B presents the listing of a computer program, written
in FORTRAN IV for the IBM 1130, to compute truss-ring module
parameters from full-scale shell parameters.
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7.2 Use of Reinforced and Stiffened Shells for Simulation of
Orthotropic Cylinders

Although the structure to be modeled is a cylindrical shell,
the following developments can be carried out with little regard
to the shape of the structure. Flat plate elements are used and
all materials involved are assumed to obey the generalized Hook's
law. Bending and extensional rigidities for an orthotropic plate
are found and the equivalent orthotropic properties are expressed
in terms of the model shell geometry and constituent material
properties,

7.2.1 Bending and Extensional Rigidities for an Orthotopic
Plate

An orthotropic plate is one which has different material prop=
erties in two mutually perpendicular directions, In this section
the two directions will be referred to as the longitudinal and
transverse. Hooke's law for an orthotropic plate is:

g =0 gyt Crofe

O = C1p gy * Cyo6, (49)
Toe ™ Ce6 Yit

By applying direct stresses in each of the two directions, the
following set of relations can be obtained.,

ag

2
C
El = Cl1 - 12
C
C € 22
~ug, = ~12=5c
€22
2
c
Et = C22 - ClZ
11
-utﬂ, = - C12 = _E_Q'
Cl1 €t
G = C66

with <. "% " -u—- (50)

MARTIN MARIETTA CORPORATION
DENVER DIVISION

7=15



7=16 MCR=68--87

Equations (49) can be rewritten to give strain instead of stress,

7 o o oo b 2% %2%
11 S22 = €12
€ = i (=C + C g.)
t” e o -c5 12 11 %
11 %22 = €12
1 T
Yo Ceo e
or
1
%7 % (@ = Upe 9¢)
€ = 1 1
t Et (-utz o7} + Gt) and Yoe T Toc

It can be seen that there are four independent material properties
necessary to describe the behavior of an orthotropic plate, These
properties are G and any three of the properties in Equation (50).
The existence of Equation (50) dictates that G must be one of the
independent properties.,

Consider the bending of an orthotropic plate in the longitudinal
direction. For small deflections the curvature can be expressed by

where w is the lateral deflection. The unit elongation a distance
a from the middle surface is

In order to maintain continuity during bending the transverse strain
must be zero, Therefore!

€ N (o, = ag,)

2 TE, %2 Mot %t

£ = L. (=p. 0, +0 ) =0 g =wu 0
t Et tl & t ’ t tL 2
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Therefore:
%,
€y = }iz (1 =ug, Hp)
and
. ) Egz 35

27 T =gy M) T @mmg H) o2

The total bending moment can be obtained by integrating the bending
stresses through the thickness of the plate

h/2 h/2 2 3
2
-y, u ) 2 2z 12(1=u, U o) 5,2
“h/2 h/2 g Heg’ o aefee’ ag

Therefore, the bending rigidity for longitudinal bending is:

E b
D, = &
Lo 1201 - g )
or
g% p3
D, = Z
L 2

12(Ey = Eguy o)

A similar treatment for bending in the transverse direction yields:

3
ElEth
2

12(Ey = Eehgy)

Expressions for extensional rigidities in each of the two
directions can be obtained in much the same manner,

E h
2
Ky = )
By = EeM e
' E E B
K, = 2
By = EHoge

7.2.2 Equivalent Properties in Terms of the Constituent
Material Properties and Shell Geometry
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t
Fig, 7.7 Typical Model Section
Nomenclature:
M, matrix Poisson's ratio
Em,Gm matrix moduli
Ef,Gf fiber moduli
Af fiber cross—sectional area
h  thickness of unreinforced shell
t depth of circumferential stiffeners
Sl width of stiffeners
82 stiffener spacing
Sz longitudinal fiber spacing
St transverse (circumferential) fiber spacing
R middle surface radius
N In order to derive an expression for the equivalent modulus

in the longitudinal direction, a pseudo material is first developed.
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This material consists of an unstiffened plate with fibers in the
transverse direction only. The fibers are assumed to have a square
cross—-section with the same area as the actual fiber, This simplie
fying assumption allows one to assume a uniform strain distribution
on a plane tangent to the fiber and perpendicular to the longitudinal
axis, Equilibrium is enforced across this plane between adjacent
elements with and without an encased fiber, see Fig., 7.8.

Figure 7.8 Unstiffened Plate, Transverse Fibers

The above conditions and assumptions lead to the following expression
for the longitudinal modulus for a material with transverse
fibers only.

stEm[fo + (1—A)Em]

E' = —ie
2 bEm + (st-b)[fo+(1-A)Em]
Where A= %

Now, suppose that the stiffeners are included and that their
presence is accounted for by allowing h to be replaced by an
effective thickness h, such that equilibrium 1is maintained between
stiffened and unstiffened portions of the shell,

Then? h(S, + §.)(h + 2¢)
T - 12
(s, +5,) + 2tS,
and - stEm[XEf + (1= DE ]

27 BE_+ (st-b)[ﬁf + (1-0E_]
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where A=

=1 jor

The total effective longitudinal modulus can now be obtained,
using Eg as the matrix modulus for longitudinal extemsion. The
total load in the £ direction will be the sum of the loads carried
by the longitudinal fibers and the matrix., A uniform strain dis=-
tribution 1s assumed.

Pp = 0ph = Epephp T Epdy
Therefore: -
Af - Ah
E, =E,~— + E —
2 £ Y 2 Z
Let AfT Af
0= === = o= , then

EZ = Efa + El(l - Q)

The derivation for the extensional modulus in the transverse
direction is similar to the preceeding, however the effective
thickness, h, is replaced by h', The new effective thickness is
obtained by allowing the stiffeners to be "smeared" over the plate
surface such that an equivalent area is offered to resist trans-
verse loading,

h(sl + Sz) + 2tS

1
hl
(Sl + Sz)
Then:
' ) !
= ] SQEm[A Ef + (1=) )Em]
- -}t
t bEm + (S2 b)[XEf + (1= )Em]
and -
Et = EfB + Et(l-B)
where Af A
e L wf g ave B
AT Sth' h
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It has been demonstrated that the extensional modulus in each
of the orthogonal directions is a function of the fiber fraction,
Each material contributes to the equivalent modulus according to
its percent of volume present, However, an equivalent modulus
derived from bending considerations depends upon the donation of
each constituent material according to its percent of inertia
present, For this reason, two different modulil result, depending
on the mode of deflection; an extensional modulus and a bending
modulus, In regard to the rigidities obtained in Section 7.2.1,
when the product E_I_/I is not a small quantity, the appropriate
modulus must be uséd in each rigidity expression according to the
implied deflection scheme,

In order to maintain consistency with the derivation of the
longitudinal extensional modulus, the stiffeners are assumed to
influence longitudinal bending in accordance with h, Maintenance
of compatible deflections and slopes of the fibers and matrix
material during bending yields the following expression for the
longitudinal bending modulus, Transverse fibers are assumed not
to influence longitudinal bending,

Epg = EgYp + E (1=Y))
2

I -
TS gh

where Yl = 3

Transverse bending involves the inertia of the transverse
fibers and stiffeners., The stiffeners are accounted for by
using the equivalent thickness, h'. Longitudinal fibers are
assumed ineffectual during transverse bending.

Epe = Eg¥e + By (-Y)

where 1 3A Z

Congsider the following model, shown in Fig., 7.9,

For a load applied in the longitudinal direction, there will be a
corresponding strain in the transverse direction, which is
proportional toc the longitudinal strain, The proportionality
constant, or Poisson's ratiol&t, can be obtained by enforcing
transverse equilibrium between fiber and matrix material and
assuming a unifrom strain distribution on a plane anywhere in -
the element, provided that it is normal to the transverse axis,
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The derivation of Moo is as follows using Fig. 7.10,

Fig. 7.9 Model of Element Reinforced in Two Directions

For transverse equilibrium,

a1y * 0phy = 0gh5 + g8,

]
N
27745 et

Y 4
L

Fig, 7,10 Notation of an Element

2
= Ll -
where Al h St b
2
A2 = b

2

A4 = b(St + b)

The equilibrium equation becomes:
2 2 2
1 o = '-
El{E (h St b") + Efb } €3{E [(h'=b"] + Ef[b(St+b)]}

With el + e3 = et
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or, e = Etsz = el(ssz) + €3b
and g = umez
Therefore: 2 2
E (h'S =b") + E_b
u2t=§uﬂ‘- (5g=b) +b L tz £
L Em[(h'_b)st'b 1+ Ef[b(st+b)]

The method for determining an expression for the equivalent
shear modulus 1s analogous to that used for the equivalent
extensional moduli , A pseudo material is developed for each
orthogonal direction which includes the effects of resistance to
shear in the direction of each fiber axis only. A uniform strain
distribution is assumed on a plane tangent to the fiber and
perpendicular to the plane, and equilibrium is enforced across
this plane. For the total equivalent shear modulus the shear moduli
of the pseudo materials are used as the matrix shear modulus in
the appropriate direction, See Fig, 7.11 for notation.

-h—————Sﬁ__——__.

—»‘«—b

-t P
i
|
se Tt oo ——e
* |l
E '

P -

L
Fig., 7,11 Shears on an Element of Composite
For equilibrium,

Ptst = PQSQ

with

h? and P

= = A
Pt Tts2 2 Tzsth
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Therefore,
Tt = Ty= T
Also,
P =G,y b2 + G v (8 h'-bz) = T S h'
t f't t't "8 t° 2
P, = G_.Y b2 + G,Y,(S h'-bz) = 7.5 h'
2 £'2 A A o 2t
The total shear strain is
et e oafle, ) L3
Y 2 2\¢ 73T G
Therefore,
2 112 2 1_n2
c 2[Gfb +Gt(szh b )][Gfb +G2(Sth b™) ]
2 2 2 2
' LR ' '
Szh [Gfb +G£(Sth b)) + Sth [Gfb +Gt(sll,h b7) ]
where,
" w M
¢ - StGm[GfA me(l AN
- " -) 1
t me+(St b)[GfX +Gm(1 A"]
1] -t
SZGm[GfA +Gm(l A1
= " - 1Y
Gz me+(S£ b)[Gfk +Gm(1 A1
. b
and A= i

In retrospect, it should be mentioned that the preceeding
analysis involves simplifying assumptions which should remain true
for small displacements of thin plates (or shells), The intent of
the analysis is to provide relatively simple, but meaningful
expressions for the equivalent, orthotropic properties, Model
geometry and constituent material properties are parameterized in
order to reproduce prescribed equivalent properties,
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8. APPLICATION TO SPACE STRUCTURES

The design and development of flexible orbital structures
proposed for the future will require an accurate prediction of the
structural deformations and dynamic loads encountered in a space
enviromment. Some of the typical configurations that may be
deployed during the next decade are:

a. Orbiting space stations such as the Apollo Applications
Program (AAP) Orbital Workshop and the Manned Orbital
Laboratory (MOL). The maximum dimension of such stations
may be several hundred meters;

b. Dish antennas or radio telescopes with maximum dimensions
of several hundred meters; very large radio telescopes with
typical dimensions of several thousand meters.

The longest characteristic elastic periods of these structures
may range from approximately 5 seconds for the manned space stations
to values greater than 1000 seconds for the radio telescopes. The
dynamic disturbances which influence these large artificial satellites
are, in many instances, of a magnitude that is insignificant in the
analysis of current, relatively stiff, space structures.

The dynamic behavior of AAP and MOL class space stations is
characterized by the interaction between various dynamic disturbances
including elastic deformations, rigid body motions and liquid motions.
The dynamic behavior of large antennas or radio telescope structures,
deployed and stabilized by centrifugal forces, can be affected by the
interaction between the geomagnetic field and induced currents.
Additionally, thermal distortions and distortions induced through
photon pressure and the interaction of spin rate with the gravity
gradient may produce appreciable elastic deformatiomns,

An indicative (but not dimensionless) parameter that may be used
to define the regimes of dynamic model simulation for vibration testing
is the logarithm of the quotient of the characteristic maximum prototype
dimension divided by the square of the fundamental prototype frequency,
log (Q/fz). Table 8.1 shows approximate model simulation regimes. The
characteristic dimension is measured in meters and the frequency in
Hertz.
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Table 8.1 Approximate Model Simulation
Regimes for Vibration Testing

Scaling Parameter Method of Dynamic Configuration
Log (£/f2) Simulation Applicability
-2 Predominately full- Small Launch Vehicles

scale testing; some
replica scale models

0

2 Direct geometric AAP, MOL, etc.;
models; some distorted Large Launch Vehicles
geometric models

4 General geometric 100-Meter Antenna, etc.

models (geometric
6 simulation, distorted
physical properties)

10 Completely distorted 1500-Meter Radio Tele-

models scope, etc,

8.1 Scaling of Manned Orbital Configurations

The use of direct geometric scaling using similar materials is,
in general, feasible for these configurations. This replica scaling
will automatically satisfy structural scaling laws but, unfortunately
is restricted by manufacturing and tolerance control limitations that
arise in small scale models, Also, replica scaling cannot be used to
simulate slosh effects. These limitations are discussed in Chapter 9,
In those areas where direct replica scaling is not possible, equivalent
distorted scaling techniques must be considered. Distorted scaling of
shell-like structures is discussed in Chapter 7. The equivalent
distorted scaling techniques must be carefully analyzed to ensure that
the portion of the structure simulated by these techniques will deform
in a manner similar to the prototype. Distorted scaling usually
neglects some scaling parameters that are not important to the simula~-

tion of an individual phenomonon in order to preserve the more important
parameters.
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8.2 Scaling of Antennas and Radio Telescopes

The overall complexity and relatively small dimensions of the
individual structural members of these configurations precludes
the use of replica scaling. Adequate component strength for assembly
and testing in the l-g earth enviromment requires a much stiffer
structure than would result from direct scaling. Frequencies of
the model structures typically should exceed by one or two orders
of magnitude the frequencies which result from direct scaling.
Model masses may be two to four orders of magnitude higher than the
equivalent directly scaled masses. In general, it should be possible
to construct a limited distorted dynamic model that preserves the
overall geometry but does not reproduce exactly the local geometries
of the prototype.

Because the structural frequencies of large orbital structures
are very low, the elastic vibration modes will couple with the gravity
gradient induced mode (Ref 8.1), These modes will also respond to
the excitation caused by local variations of the geocentric gravity
field. 1In addition to gravity gradient effects, large structural
deformations may be caused by periodic thermal expansion and by the
incident solar wind.

MacNeal (Ref 8.2) discusses several of these effects in relation
to a typical 1500-meter radio telescope and concludes that the maximum
total photon pressure load is approximately 1/15 of the axial component
of tension in the spiral fibers due to spin. Further, when it is assumed
that the ratio of fiber stress to axial load is the same for the two
conditions, the resulting reflector stresses are approximately ten
times the stress due to the gravity gradient. A comprehensive investi-
gation of gravity gradient-induced stresses in an axisymmetric body
rotating about an axis perpendicular to the orbital plane can be
found in Reference 8.3.

8.2.1 Simulation of Thermal Effects

The thermal modeling analysis of space structures is based upon the
assumption that the structure is operating in a high vacuum environ-
ment. Therefore, the only thermal considerations are heat transfer by
radiation and heat conduction within the structure.

The functional expression for the rate of internal heat production
is

q=f(k, H, ¢, 0, €, 0, &, t, T)
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where q = rate of internal heat production/unit volume, Q/L3T
k = thermal conductivity, Q/LTR
H = radiation intensity, Q/LZT
c = heat capacity/unit volume, Q/L3R
0 = Stefan—-Boltzmann constant, Q/LZTRé
€ = emissivity,
0 = absorptivity,
£ = characteristic length, L
t = time, T

T = temperature, R.

The basic variable dimensions (Q, L, T, R) yield six
independent scaling relations

T, = €, M, = O = kt/clz,

2 T3

=1
I

= GT32/k, T HL/kT, and T, = qzz/kT.

5 6

Other sets of non-dimensional groups might be obtained from
the fundamental expression. This group is particularly convenient
for dynamic scale modeling as each term, where possible, contains
the characteristic length parameter (). Thus, it is possible to
relate the several scaling parameters to the model-to~-prototype
scale factor.

Two methods of thermal simulation can be developed. These methods
ares

a. Maintain identical temperature time histories for model (m)
and prototype (p) with no material restrictions, or

b. Maintain identical materials for model (m) and prototype (p)
and predict the temperature time histories.
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The similitude requirements for the two cases, developed from
7, through m,., are presented in Table 8.2, The parameter n defines
the length scale factor, n = zm/zp.

Table 8.2 Thermal Modeling Similitude Requifements

Temperature Time i
History Identical Materials Identical
Tm/Tp = 1 km/kp -1
Hm/Hp =1 cm/cp =1
2
k/k =1 t /t_=n
m p ' Fp
= -1/3
tm/tp = n(cm/cp) Tm/Tp -
qm/qp =1/n qm/qp _ n—7/3
H /H n'—[*/3
m
£ = € , o = q , o =g

The concept of maintaining identical temperature time histories
appears to be advantageous where steady state temperature conditions
are involved. The advantage of either method is not obvious when
transient thermal conditions are considered. A complete discussion of
thermal similitude requirements for spacecraft models can be found
in Reference 8.4.

8.2.2 Simulation of Gravity Gradient Effects

The necessity to scale the influence of the gravity gradient

on large space structures depends upon the oscillatory period of the
fundamental mode. When this period exceeds about 1000 seconds, the
orbital structure cannot be regarded as an independent system. At
higher structural frequencies there 1s sufficient frequency separa-
tion between elastic vibrations and gravity gradient~induced rigid-
body oscillations and the coupling between these two types of modes
can be disregarded.

MARTIN MARIETTA CORPORATION
DENVER OIVISION



MCR~68-87

Consider, for example, a beam-like space structure rotating about
its center of mass (Fig. 8.1). A circular orbit is assumed.

Figure 8.1 Beam-Like Space Structure, Circular Orbit

A\

The longitudinal structural deformation can be expressed in
functional form as

§ = f(m, %, AE, ¥, 3G/9R, T, t)

where § = longitudinal deformation, L
£ = characteristic length, L
AE = extensional stiffness, F
Y = beam rotation rate, 1/T
3G/9R = gravity gradient, l/'}f2
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T

]

orbital period, T

4

t = time, T.

The functional relationship contains eight variables in three
basic dimensions. The principles of Chapter 3 indicate that five
non—-dimensional scaling relations exist. They are

2.2
nl =§8/8, m, = mi“y"/AE, 7r3 = ty,

T, = /T and T, = (36/5R) 2.

The scaling relationships obtained from the above can be expressed
in terms of the length scale (n = Qh/lp) and the material properties as

l/Z/n,

8, /8, = m U/ = [n (AR /m (AE) ]

tm/tp wp/wm, Tm/Tp = wp/wm,

and  (36/3R),/ (BC/3R) (wm/wp>2.

The use of a centrifuge for model simulation of the gravity
gradient is considered to be feasible. A possible test configuration
is shown schematically in Figure 8.2 .

Figure 8.2 Centrifuge for Gravity Gradient Simulation
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The desired model gravity gradient defines the required
centrifuge velocity,

Q= (ac/aa)ml/ z,

The period scaling, defined by the above expression and ﬂs, is
1/2
T /T = (3G/9R Q
wlTp = (/AR 7
and the velocity scaling is

_ 1/2
bV, = 9 (Q6/3B)

The stiffness scaling, from ﬂz, is
(AE) /(AE) = n>(m_/m_ )92/ (3¢/3R)_.
m P m p P

An additional angular velocity, Qm’ pust be applied initially
to the model to compensate for the relative motion between model
and artificial gravity gradient vector. This velocity is

Q =Q+ 1/t .
m m
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9. LIMITATIONS AND ECONOMICS OF DYNAMIC MODELS

The following sections define some of the major limitations
associated with the simulation of full scale dynamic characteristics
and the economic aspects of model design and construction,

9,1 Limitations

i) Manufacturing limitations~=-for very small scale factors
it becomes very difficult to reproduce exactly the local
geometry of the full scale configuration; errors due to
material tolerances are increased,

i1) Non~linear structural effects~-at certain loads conditions
local skin buckling may occur,

11{i) Aerodynamic effects—=-—direct scaling of aerodynamic effects
may not be possible under certain test conditioms,

9.1.1 Manufacturing Limitations

The reproduction of launch vehicle configurations to small
scale factors 18 restricted by the manufacturing limitations,
Scale factors as low as 0,30 should cause no manufacturing problems
for current launch vehicle configurations; at smaller scale it
becomes increasingly more difficult to reproduce exactly the local
geometry of stiffenmed shells, truss~like structures, and propellent
tank walls, In addition, rivets and other fasteners become
unreasonably small and the assembly of components by welding 1s no
longer possible., An excellent example is found through examination
of the prototype Saturn V vehicle., Typical second stage tank
geometry and second-to-third stage adapter geometry (Ref 9,1) are
shown in Figures 9,1 and 9.2, Note that at 107 scale factor skin
thicknesses less than 0,005" would be realized in a model that is
almost 40' high,

In order to keep model manufacturing costs within allowable
limits, it is usually necessary to work with commercially available
stock and thus eliminate costly manufacturing processes, Tolerances
on available stock materials limit the accuracy of model calculations
and the use of such stock introduces increasingly serious limitations
as the proposed scale factor is diminished. The problem can be
minimized by selective sizing of stock and by measuring the actual
dimensions of the scaled structure,
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Prototype Dimensions, Inches
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9.1.2 Non-Linear Structural Effects

Several existing directly scaled models have exhibited a high
degree of fidelity in their ability to reproduce accurately the
dynamic characteristics of the prototype vehicle; the two best
examples being the 107%-scale Saturn V (Ref 9.2) and the 207=-scale
Titan III (Ref 9.3) models. However, while these models have
exhibited excellent overall dynamic reproduction of their full=-
scale counterparts, in certain instances they have also exhibited
certain of the limitations of the direct scaling approach. The
necessity to reproduce the shell structure which comprises a major
portion of this type of configuration requires that the model be
relatively large. Nevertheless, in certain areas of the vehicle
the resulting skin gages may still be inadequate to resist the
assembly stresses caused by the integration of several components
into the complete model. Imperfections of this type are inevitable
when direct geometric scaling is employed and it may be necessary
in the future to consider scaling techniques whereby direct
scaling is applied to those areas of the vehicle where skin gage
will permit and other, more critical areas employ distorted
scaling.,

9.1.3 Aerodynamic Effects

The direct scaling has only limited application in the area
of aerodynamic testing due primarily to the restraints imposed by
available tunnel facilities, The investigation of wind-induced
oscillations on a Titan I1I model (Ref 9.4) illustrates this point.
A 7,5% dynamically scaled model of the Titan III vehicle, trans-
porter launch frame and umbilical mast was constructed in addition
to a 7,57% geometrically scaled model of the umbilcal tower., The
model simulated the mode shape and frequency characteristics of
the full scale launch vehicle, umbilical mast and transporter,

The requirements for accurate dynamic scaling of this type
of model are:

Matched Reynolds Number; Re = 25& ,
wl
Matched Strouhal Number; S=3

and matched model to air density ratio,
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However, the tumnel imposed conditions (NASA Langley Research
Center, l6~foot transonic tunnel) which arose due to the use of
Freon 12 as the test medium were!

PrumveL/Patr = 37

Pounwen/Marr = 0+757

and it was therefore not possible to scale the stiffness of an
unfueled vehicle without exceeding the scaled mass distribution,
A compromise in the form of a mismatch in either Reynolde number
or mass distribution was necessary and the former was selected as
being the least severe. It is important to note that the Reynolds
number of the model test in the tunnel will usually be much lower
than the true flight condition (in the wind~induced oscillation
test 1t was 45% of the full-gscale value) but there is little that
can be done to alleviate this problem., Test conditions should be
chosen to make the Reynolds number as high as possible but the
full-scale value will seldom be approached.

9.1.4 Structural Damping Effects

Structural damping is a phenomenon strongly dependent not
only on the type of comstruction but on material finish, pressure
in the joints caused by rivets or other fasteners (Ref 9.,5), non-
structural items mounted on primary structure, etc, Limited data
is available on modal damping of models and for that reasom no
statistical evaluation 1ls possible., However, a rather complete
set of damping ratlos was obtalned during the Titan I1III model
vibration test (Ref 2,3), Figure 2.8 (taken from Ref 2.3) ghows
the trend of damping ratios for lateral and longitudinal modes.
No full scale corresponding values are available, consequently
no conclusions can be drawn., The inability to assess the prototype
model damping coefficient from model tests makes the use of
dynamically similar models for design purposes somewhat question-
able, This fact becomes even more so when unconventional structures
are dealt with where no known previous damping data are available,

9.2 Economic Aspects

It does not seem logical to design and fabricate a model
whose overall cost is greater than that of a prototype, On the
other hand the manufacture of an inexpensive model may result in
misleading and even incorrect data due to menufacturing simpli-
fications which yield an incorrect dynamic simulation of the
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full scale structure, It becomes essential to consider the overall
optimization of the economic situation in order to achieve a
realistic model test program — a program ylelding resulte within
prescribed tolerance levels and, at the same time, a program within
allowable budgetary limits,

The study of the economics of dynamic model testing may, in
a very general sense, be divided into four major categories:

i) Model design and construction
11) Required test facilities, equipment and instrumentation

iii) Model testing
iv) Data acquisition and analysis.

Approximately 30 elastically scaled dynamic models of
alrcraft and launch vehicles were surveyed to establish dynamic
modeling costs, Data collected included method of comstruction,
total cost of model, estimated engineering cost, material cost,
and a measure of simulation quality (the approximate number of
modes simulated by the model). It was established that the method
of construction and the approximate number of modes simulated,
rather than model size or weight, defined model costs. The summary
of the results of this survey is shown in Figure 9.3,
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10, CONCLUSIONS AND RECOMMENDATIONS

A comprehensive summary of the dynamic scaling laws applicable
to current launch vehicle configurations is presented. Primary
consideration is directed to the study of direct geometric scaling
using similar materials (replica scaling) although, where applicable,
certain distorted scaling techniques are considered.

A review of the current state-of-the-art regarding launch vehicle
dynamic models indicates that the several vibration survey models
used to either augment or replace the usual analytical investigation
have exhibited faithful dynamic representation. Additionally,
dynamic models used for aeroelastic investigations (e.g., wind-
induced oscillations, buffet) have yielded satisfactory results in
view of the limiting conditions imposed by available wind tunnels.
A more extensive investigation of aerodynamic scaling and the
restrictions imposed by the failure to exactly match all the required
scaling parameters is recommended.

A simple matrix procedure which regularizes the derivation of
scaling parameters to the extent that they can be developed through
digital computer analysis is detailed. This procedure has no known
previous application and is comsidered to be a substantial improve~
ment over existing methods. Most of the scaling parameters presented
here were developed using this procedure.

The scaling laws applicable to beam~like structures are
summarized and the advantage of replica scaling, where possible, is
emphasized. Simulation of uncoupled bending or torsional vibration
is discussed and it is concluded that replica scaling is, where
viscoelastic materials are concerned, impossible. An investigation
of propellant slosh effects in beam-like tanks indicates the
feasibility of simulating boost acceleration levels in a 1-g test
environment through the proper adjustment of physical properties
and time scale. A study of load and response scaling indicates that
geometric similarity is not required to simulate these phenomena.

Simulation requirements for shell-like structures including
isotropic and orthotropic cylindrical shells are summarized. This
summary includes a study of coupled elastic-slosh modes and it is
concluded that distorted scaling is required if small scale models
are used to simulate the boost acceleration enviromment. The need
for further investigation of possible construction techniques to
simulate slosh-elastic coupling is clearly indicated. An experimental
program to build and test such a model, possibly using plastics
loaded with metal powder and heavy liquids as the simulated
propellants is recommended.
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Scaling laws applicable to the simulation of both uncoupled
and elastically coupled lateral propellant sloshing are developed
and it is concluded that an arbitrary prototype acceleration can
be simulated with an appropriate adjustment of the time scale.

The difficulty is maintaining exact similitude in all structural
parameters, due primarily to manufacturing limitations imposed

upon small scale models, is emphasized. Scaling requirements for
simultaneous simulation of two or more liquid effects are presented.

The distorted shell simulation methods developed during this
study (truss~-ring modeling, reinforced plastic modeling) have had
no previous practical application. An experimental program oriented
toward verification of these methods is being performed. The
results of this study will give a reasonable indication of the
applicability of these distorted scaling techniques.

Only a limited investigation of modeling techniques applicable
to large space structures has been conducted. A serious need exists
for a detailed theoretical and experimental program to investigate
the modeling techniques required for the simulation of such structures
in the test laboratory. Simulation of gravity gradient effects,
photon pressure effects, cyclic radiative thermal effects and
interaction of induced currents with the Earth's magnetic field are
possible areas of study. These effects, while insignificant to the
"small" and rigid structures of the usual Earth enviromment (including
launch vehicles), will couple with the structural dynamic deformations
of large, and relatively light, orbital structures. The modeling
techniques necessary to simulate these structures in a space
environment will be established only through continued and intense
research studies.
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B.1 ORTHOTROPIC SHELL SIMULATION USING TRUSS~RING MODULE

The scaling parameters for simulation of orthotropic cylindrical
shells are

2 2 .
e dsk w /Kxx’ T = ny/Kxx’ T3 Kyy/Kxx’
2 2 2
M = Dxx/KxxA ’ M5 = ny/KxxA s T % Dyy/KxxA ’

M = Bxy/Kxx’ Mg = sz/Kxx' Tg = Byz/Kxx
and T, = AL
where w = frequency, 1/T

d = surface mass density, F'I'2/L3

K__,K__.L = extensional rigidities, F/L
XX Xy yy
Dxx’ny'Dyy = bending rigidities, FL
BXy = in-plane shear rigidity, F/L
yB_ = transverse shear rigidities, F/L
xz’"yz

% = characteristic length, L
A = any length.

Tne relations between orthotropic shell parameters and truss
ring module parameters (Section 7,1,6) are

Orthotropic Shell Iruss—Ring Module
3
<x (n/m) (AE/R) (d/2)
K AE /d
yy rr
D EI /d
vy rr

By (n/m) (AE/R) (4/2) (a/2)% cos(a/2)
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Orthotropic Shell Truss=-Ring Module
- (n/m) (AE/2R) (4/R) (a/2)?
v, (m/m) (E/E,) (/A ) (/) (4/2)° (a/2R)
where n = number of joints on one side of ring,

R = radius of ring centerline,
d = longitudinal distance between ring centerlines,
% = length of truss bar, 22 = a2 + dz,
o= m/n,
a = 2R sin(a/2),
A = area of truss bar,
E = modulus of elasticity of truss bar,
A_ = area of ring,
E_ = modulus of elasticity of ring,
I_ = area moment of inertia of ring,

and Ve is the equivalent Poisson's ratio.

The computational procedure for truss~ring module design is
based upon knowledge of the prototype rigidities,

Kex » Kgy s Dy and B
P P P P

and specified values of the model=to=prototype ratios

dsm/dsp, Am/kp and wm/wp.

If values for n, R, E and Er are selected, the unknown model
parameters can be establishéd. The truss rod spacing is

a = 2R sin (0/2) (Bol-1)
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where o = m/n. The truss ring spacing can be established from
the scaling relation

2
xym/Kxxm -, = Bxyp/Kxx = (a/d)” cos (o/2)

and is

d = a[COS(Q/Z)Kxx /BXY ]1/20 (Bcl"Z)

P

The truss rod length is then

g = [a% + a411/2, (B.1-3)

The truss rod cross—sectional area can be established from the
similitude requirement

d A zw 2/K = . o= d AZ wz /K
s m m ' xXx 1 s P P xXx
m m P P

and the scaling relation

Kew ™ (n/) (AE/R) (4/9)°

and is 3
A = (R/E) (n/m) (R/4)K (B.1-4)
m

The truss ring cross-sectional area, established by the similitude
requirement

K /K =7, =K /K
yyp xxp 3 Yy, EX

and the scaling relation

K = A E_/d,
Y, rr
is
A = (d/Er)(Kyy [ S| . (B41=5)
P p m
Likewise, the truss ring cross-sectional area, established by the
similitude requirement
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D /Kx)\z-n6nD /K xi
yy, *C P yy,' xx

and the scaling relation

Dyym = EL/4,
is 2
Ir = (d/Er)(Am/Ap) (Dyyp/Kxxp)Kxxm (B.1=6)

The equivalent Poisson ratio
v, = (o/m) (E/E) (/A ) (a/d) (d/2)° (a/2R)

may be written

v, = [(a/m (AE/R) (a/0°1[(a/A E ) (a/D)?1/2

2
v, = (a/d) (K.xxm/Kyy )/2

m

v, = (a/d)Z(Kxxp/Kyyp)/z (Bo1-7)

This procedure gives exact representation of the gimilitude
requirements dictated by 7 13 ﬂg, Te and Mo Close simulation of

ﬂz will be achieved for realis ic structures.
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$IOCS{CARD TYPEWRITERKEYBOARDy 11 32 PRINTERDISK)

c
C SCALING PROGRAM FOR SHELL SIMULATION
C INPUT PARAMETERS
C
C SU = MODEL LENGTH / FULL-SCALE LENGTH
c SF = MODEL FREGUENCY / FULL-SCALE FREQUENCY
C SM = MODEL SURFACE MASS DENSITY / FULL-SCALE SURFACE MASS DENSITY
c SXX = KXX FOR FULL-SCALE AT THIS SECTION (SECTYION 5.2)
C SYY = KYY FOR FULL-SCALE AT THIS SECTION (SECTION 5.2
C DYY = DYY FOR FULL-SCALE AT THIS SECTION (SECTION 5.2)
c BXY = BXY FOR FULL-SCALE AT THIS SECTION (SECYION 5.2)
C
C REPEAT INPUT DATA FOR EACH CHANGE OF SECTION PROPERTIES
C STOP WITH BLANK CARD
c
1 READ(2:100) SLeSFoeSMeSXXeSYYeDYYeBXY
100 FORMATI7F10.0)
C
IFESL) 500+500.2
C
2 CALL BASKASLsSFeSMeSXXeSYYeDYYeBXY)
c
60 10 1
C
500 syoP
END
SUBROUTINE BASK(SLeSFoSMeSXXeSYYeDYYsBXY)
C
C INPUT PARAMETERS
C N = NUMBER OF JOINTS (N.GT.2}
c R = RADIUS OF SHELL
c E = TRUSS MODULUS OF ELASTICITY
c ER = RING MODULUS OF ELASTICITY
C
READ(2+.100)N+sR+EER
100 FORMAT(110s3F10.0)
c

IFIN—-2)5:10+10
5 WRITE(3,200
200 FORMAT(40H NOT ENOUGH JOINTS SPECIFIED-ABORT CYCLED
60 10 500

10 CN=N
ALFA=-3.141593/CN
AzZ2 .*RsSINCALFA/2.)
DZA«SQGRT(COS(ALFA/2.)«SXX/BXY)
XLZSORT{(A®*24Ds ¢2)
SXXMZSXX*SMeSLs%2sSFo 22
ARODZ{(R*3.141593% XL *+3/(E«CN*D#»=23)) *SXXM
ARINGZD«SYY S AXXM/(ER*SXX)
XIRIN ZD»SL=#2x DYV SXXM/LER =SXX )
SYYMZSXXMeSYY /7S XX
POISZ0.S5*A» 82 xS XXM/ (SYYMsDs =2)

WRITE(3,210)

21N CNDOMAT 2 w24 CHEl T CTMINEATTNN NHCTNL TRONKC-DTMEGE MANDNE T L 77 %



WRITE(3+¢2013SLeSFoSMeSXXeSYYeDYYeBXY

201 FORMAT(27H MODEL-VTO-PROTOTYPE RATIOS//bH SL ZeF7.3/6H SF ZsF7.3
1/6H SM ZoF7.3/722H PROTOTYPE RIGIDITIES//TH KXX =esEl&.6/
2TH KYY =Z+E14 .67 TH DYY ZeEl4.6/7TH BXY =eEl44.6/77)
WRITE13+202IN9REPER

202 FORMAT{36H TRUSS-RING MODULE INPUY PARAMETERS//20H NUMBER OF J0OI
INTS -¢I4%/310H RADIUS =sF6.3731H TRUSS MODULUS OF ELASTICITY =»
2E14 .6 /300 RING MODULUS OF ELASTICITY =9Ei4.6//7)
MRITE(3:2033A¢DoeXile ARODsARING+XIRIN

203 FORMAT{3TH TRUSS-RING MODULE OUTPUYT PARAMETERS//S5H A =+El 4.6/
I5H D =ZsE14.6/7/5H L Z+E14.67184 TRUSS ROD AREA =+£14.6719H TRUSS
2 RING AREA =+E14.6/37TH TRUSS RING AREA MOMENT OF INERTIA =+El& .6/
3/7/}%

WRITE(3-20410P01S
204 FORMAT(28H EGQGUIVALENT POISSON RATIO =«El4.6//7/7)
WRITE(3+205)

205 FORMATE(SIH SCALING TERMS SATISFIED = PI(1)sPIC(3)ePItO)PItTY//
162H SCALING TERMS NOT SATISFIED = PI{U)ePI(S)ePI(EIePI(S)ePTI(10}/
27/33H SCALING TERM APPROX SATISFIED - PI(2))

c
$S00 CONTINUE
RETURN
END
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B.2 ORTHOTROPIC SHELL SIMULATION USING REINFORCED PLASTIC MODEL

The computational procedure to determine the reinforced shell
model properties is based upon the physical model shown in Figure 7.7
and described in detail in Section 7.2, The notation is that of
Section 7.2,

The approximate wall thickness, fiber area and fiber spacing
are determined in the longitudinal direction (perpendicular to
the ridges) from the simplified rigidity expressiomns

Kz = Emh + Af(Ef - Em)/Sz (B.2=1)
and 3 2

IZDZ = Emh + Af (Ef - Em)/sz. (B,2=2)
For assumed square fibers, the fiber width is d = A l/zand, if

the fiber spacing is specified as S
B.2=~2 become

.= nd, Equations B.2~1 and

Kg’ = Emh + d(Ef - Em)/n (B.2=3)

and 3 3
12D2 = Emh + d (Ef - Em)/n. (Bo2=4)

Similarly, the matrix thickness may be expressed as h=kd and it
is seen that the constants n and k are restricted to N > 1 and

k > 1; the minimum values (n=l, k=1) specify a solid sheet of the
fiber material,

Rewriting Equations B.2-3 and B.2=4 in terms of d, k and n
yields

K = d(kEm + (Ef - Em)/n) (B.2=5)

and 3.3
12D2 = d7(k Em + (Ef - Em)/n). (B+2=6)

Figure B-~l shows the physical limitations on d as a function
h. Parametric lines of k=const and N=const for given values of
KQ and D2 are indicated,

If k 1s set at a constant value and d is eliminated from
Equations B.2~5 and B.2=6, a cubic equation in n can be obtained,
This equation is
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3 2
A3n + Azn + Aln + Ao = 0 (Be2=7)

where
2 3
Em = Kl )

L
2.2 3
(Ef - Em)(BGDRk Em - Ky )

.
1

KOE (12D
m

>
]

(Bo 2"8)

"
[}

2
36D2kEm(Ef - Em)

Py
[

.3

Physically realistic solutiomsare limited to k > 1, If the
value of n obtained for k=1 is less than unity, there exists no
physical solution for the given values of Em and E_ and the
specified values of K, and D,. Realistic values of n and k may
be obtained by increaSing E_, A value of n > 1 obtained for
k 2> 1 represents a physicaliy possible reinforced shell model,
Further increasing the value of k will result in a decrease in
the value of n. The algorithm for the optimization of n and k in
the initial parameter selection maximizes the product (n-1) (k~1).

When n and k have been established, Equation B,2-~5 can be
used to compute the fiber width., This parameter is

d = nKQ/[(nk—l)Em + Ef] (Be2-9)

and it follows that the matrix thickness and longitudinal fiber
spacing are h = kd and § = nd, Note that Equation B.2-9 will
yield only an approximate value for d as Equations B,.,2-1 and
B.2-2 are themselves only approximations., After the approximate
parameters are determined for the transverse direction, these
longitudinal parameters can be modified by an iteration process,

The approximate matrix parameters in the transverse direction
(direction of the ridges) from the simplified rigidity expressions

K, = E b+ 2EQt + A (E. - E )/S, (B.2-10)

and 3
12Dt = (1 - Q)Emh

3 2
+ Q(h + 2t) Em + Af (Ef - Em)/St (B,2-11)
where
S, = width of "ridges" used for bending reinforcement
t
(Fig. 7.7),
T = width of "valleys" and Q = S/(S+I),
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The ridge height is t. If it is assumed that A_ is the same in

both the longitudinal and the transverse direct{ons and if the
transverse fiber sapcing is written as a multiple of the longitudinal
fiber spacing, Equations B,2=-10 and B.,2=11 can be rewritten as

Kt = Emh + 2EmQt + d(Ef - Em)/(nj) (B,2=12)
and 3 3 3

12D, = (l-Q)Emh + Q(h+2t)°E_ + d (Ef-Em)/(nj) (B,2=13)
with the restrictions that

nj 2 1, 0gQg1l and ¢t >0, (B.2=14)

The initial data computation algorithm proceeds by arbitrarily
setting Q = 0.4, Elimination of the product nj from Equations
B.,2=-12 and B.2-~13 yields a cubic equation for t

3 2

B3t + th + Blt + B0 = ( (Be2=15)
where
33 = 8QEm
B2 = 12QEmh
2 2
B, = 2QE_(3h" - d%)
B = d°(K. - E h) =12D. + E h>.
0 t m t m

If no positive real root exists, the longitudinal and transverse
directions should be interchanged. 1If one positive real root
exists,

j= d(Ef - Em)/(nl(t - nEmh - ZnEmQt) (B,2~17)

I1f more than one positive real root exists, the resulting values
of j can be computed from Equation B.2=17, No physical solution
exists for jn £ 1.

At this point the computer program presents a choice to the
operator. The current values of j, jn, t, t/h and Q are printed.
If more than one set of these variables 1is available the operator
may select the most desirable solution or he may elect to change
the value of Q. If this is done, Equation B.2=15 is recycled and
new solutions are formulated., Once a '"desirable" value of j is
attained, the transverse fiber spacing (S, = jS,) is computed and
the preliminary computation of the shell model parameters is complete.
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The equations of Section 7.2 are then used to compute the
actual values of D , K , D_ and K_ and the equivalent shear
modulus, G, The ratios of desire& to actual shell rigidities are
determined for the four controlling rigidities and if these ratios
are satisfactory, the program is terminated. If the ratios are
not satisfactory, a operator—controlled iteration process is
initiated and used until the ratios of desired rigidities to
actual rigidities are computed to within an allowable unit,
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s JOCS{CARD+ TYPEWRITER+KEYBOARD» 11 32 PRINTER«DISK)

C 1130 PROGRAM TO COMPUTE REINFORCED SHELL PROPERTIES
DIMENSION XCOF14oCOF{43+ROOTRE 3} ROOTI(3}

1 CONTINULE

C READ DATA
READ( 2999} EMs EFe XMUs GM» GF
READE2+999) SXX» SYYs DXXe DYY

8999 FORMAT(8F 10.0)
WRITE(1+998) EMs EF s+ XMUes GMe GF
WRITE(1+998) SXXe SYYe DXXe DYY
998 FORMAT(/+ 10Xs 5E£15.3)
8 WRITE(1,99)
99 FORMAT{®* DETERMINE HsD» AND SL®)

C ASSIGN SUBSCRIPT T TO LARGER ONE OF BENDING RIGIDITIES AND THE

C EXTENSIONAL RIGIDITY ASSOCIATED WITH IT
IFEDXX-DYY)106¢10e1i2

10 DL=-DXX
SL=SXX
DT=DYY
ST=SYY

GO T0 14
iz DL=DYY
DY=-DXX
SL=SYY
ST=SXX

C START COMPUTATION LOOP ON INDEX L

C FIRST MMC(-MAN-MACHINE COMMUNICATION EXCHANGE)

€ MMC - WHAT K DESIRED

is WRITE(1+100) :

100 FORMAT(® TYPE VALUE OF K DESIRED IN FORMAY F10.0"}
READIG. 101} XK
101 FORMAT(F10.0}

C COMPUTE POLYNOMIAL COEFFICIENTS 70 GET N
XCOF(a)-XKe 3 ¢sEMs (12.2DLoEM % 2—SL ¢» 3)
XCOF(II-HEF—EM) «{ 36 .oDL*XK*» 2 ¢E M &2 -S| »¢«3)
XCOF{2F-{EF—EM) ¢+ 2% 36 . #DL *X K*EM
XCOF{13-12.¢DL»{EF-EMI=3
XCOFE3I=XCOF(3) /XCOFt4)

XCOF(2¥-XCOFU12) /XCOF(ty}
XCOF{(1I=XCOFt L) 7XCOF(4)
XCOFt4r=1.

C POLYNOMIAL ROOTS
CALL POLRT{XCOF oCOF 93 +ROOTReROOTIIER)}
IF{IER}16+¢18: 16

€ MMC - ERROR PROCEDURE (IF ANY» MAY QUITes OR START WITH NEW K)

16 WRITE(2,10201ER

102 FORMATE® JER=*yI3¢" TYPE 1.0 FOR NEW Ks 2.0 FOR STOP*)
READIGs 101) CHECK
IFICHECK- 1.0 1730+ 17

17 ST0P

C ROOTS OF THE POLYNOMIAL

C THESE ARE POSSIBLE VALUES OF N

18 WRITE (101031}

103 FORMAT(®* ROOTS OF THE POLYNOMIAL{ N ) ARE?®)
DO 20 I=-1+3

20 dRITE(1+10D43IRO0TRIII+ROOTI¢TI)

104 FORMATHL/2XsELIS5.7e* + "4E€£15. 7" 1%)

C OPTION TO TRY NEW Ko OR PROCEED
WRITE(31+1051%

105 FORMAT(® IF THIS IS NOT SATISFACTORY TYPE 2.+ IF YESe 1.°)
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READ{(BG+»101)CHECK
IFECHECK—~1.014022+14
MMC = VALUE OF K PREFERRED' VALUE OF COMPATIBLE REAL N
22 dRITEL1+1061% ' / o
106 FORMATE® TYPE IN DESIRED K IN F10.0%)
READ(B+101) XK
YRITE(1+108)
108 FORMAT(®* TYPE IN DESIRED VALUE OF N IN F 10.0')
READ(B« 101} XN
COMPUTE AND DISPLAY DsHeS1
DZEXN®SL) 7€ (XN XK~1 .} «EM+EF )
HZXK=*D
S1=XN«D
WRITE(1+1103DsH»S1
110 FORMATEY D = *9E1Se7e® H = *2E1STe® SE = "eELS5.T)
' ¥RITE(1+111)
111 FORMAT(®* TMESE ARE THE INITIAL VALUES *)
END LOOP ON INDEX L
START INDEX T COMPUTATION LOOP
25 WRITE(1+112)
112 FORMAT(®* COMPUTE Ts S2s AND 0°)
MMC = WHAT 1S DESIRED @
WRITEt1: 11 3}

113 FORMAT(* SPECIFY INITIAL VALUE OF @ BETWEEN O AND 1.*)

READ(6+101)0
COMPUTE POLYNOMIAL COEFFICIENTS
XCOF{4)}=B.%0sEM
XCOF(3} = 12.%0¢EMaH
XCOF(2)=6¢QxEMrH» 22 -2 . 5D 52 «Q«EM
XCOF(1)=D#823s (ST—EM*H)~-12.2DT¢ EMsHs23
XCOF(1)=XCOFt1) /XCOFL4} .
XCOF(2)=XCOF(2) 7/XCOF(u4)
XCOF(3)=XCOF( 3} /XCOFt4]
XCOFt4¥=1.,
ERROR PROCEDURE
"CALL POLRT{XCOF sCOF ¢3+ROOTReROOTIIER)
IF IER N.E. O+ TRY NEVW @
MMC= MAY QUIT ON ERRORe OR TRY NEVW @
IFCIERY28 +30+28
28 WRITE(1+11511€ER ~
115 FORMAT(® IER="sI3+* TYPE 1. FOR NEW Q@+ 2. FOR STOP®)
READ(6+10 1) CHECK
IF(CHECK—1a)29925+29
29 STOP
30 CONTINUE
POLYNOMIAL ROOTS
POSSIBLE VALUES OF 7T
WRITE(1+203)
203 FORMAT(® ROOTS OF THE POLYNOHIAL (1) ARE®)
DO 31 I=1.3
. 31 wnxtzcx.loq)Roorntz).noovtt1:
MMC = OPTION TO TRY NEW G» OR PROCEED
WRITE(1+105)
READ(Gs 10 1) CHECK
'IF:CHECK ~1-125¢32425
MMC = ENTER COMPATIBLE PAIR OF T AND @
32 WRITE(10117)
117 FORMAT(® TYPE IN VALUE OF Q@ *)
READIG»101)Q
WRITE(1+118)
118 FORMATt® TYPE IN VALUE OF T°*)
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READI{G« 101} 7T
XJZD*{EF-EMIZUXNSST—XN*EMeH~2 2 XN«Q «EM» T )
C DISPLAY VALUE OF J AND NJ
WRITE(L-1 1930 J
119 FORMAT{® THE VALUE OF J IS®°sEl84.7)
SAMZXJs XN
WRITE(1+1200SAM
120 FORMAT{® THE PRODUCT JsN IS *Fl0.4)
S2z-S1#XJ
C MC CHOICE YO STARY T LOOP AGAINe OR PROCEED
WRITE(]1121}
121 FORMAT{® JF THIS IS OKes TYPE los IF NOT 2.°%1
READ(G6s 101} CHECK
IFICHECK—1.325¢35¢25
C DISPLAY SUMMARY OF DATA OBTAINED THUS FAR
700 WRITE{(1.150%
150 FORMATE® FOR RERUN SPECIFY DESIRED HeDeS1eS2¢Q+¢7 IN F10.0%1}
READI(G. 101 H
READ(S+101)0
READ{(G+ 101)S1
READ(Gs 1013S2
READ(Ge 10 1)@
READIS- 10127
35 WRITE{1¢1200HsDvS1eS2¢0s7
124 FORMAT(® SUMMARY OF MATRIX DATA®/® HI®eEl4.74° D = eE 14 7/7°% Siz®sE
11870 S2-%sE148.,77% O = oEl4Te® T =®oEi4.7}
C SHOW RATIOS OF DESIRED AND ACTYUAL RIGIDITIES
WRITE{1¢}251
125 FORMATE® SUMMARY OF BASIC RIGIDITY PARAMETERS AND RATIOS 70 DESIRE
1D VALUES® /)
HBARZ L/ {H+2.¢T )22, ¢T2{lu-Q)/(Hes{H22,.%T}}
XLAMZD*HB AR
ELB-(S2«EM{XLAM2EF ¢{ 1. ~XLAMISEMI D/ (D*EM+ {S2-Dhci{XLAM=EF+ {1l ~XLAM?
1=EM)I
ALF=D#+2sHBAR /S|
EL-EF«ALF «+ELBe( 1.—ALF)
HPRZ1/{H¢2..#Ts Q)
XLP =D «HPR
ETB-SI#EMs {XLP&EF+{] .~ XLPISEM) 7D+ EMeISI-DI*{XLPSEF+{] - ~ALPI=EMI
BETzD=# 2 HPR/S2
ET-EF«BET «ETB={1.-BET)
XMULTZ(XMU/STI 1% {S1-DI+Dc(EM&{S2 /HPR~D*% 2} ¢EF2D* 2 )/ {EMe{{ L /HPR~D?}
13S2-D*32) ¢EF» {D*{(S2+D)1})
CSLZEL#»#2 «H/(EL-ET» XMULT» &2}
CSL-CSL/E{H»HBAR)
CSTZEL*ET «H/{EL-ET2XMULT2«2)
CSTZCST/{HsHPR)
GAMLZ-3.#*D %2 4sHBAR*» 3/(S1»23. 1416}
GAMTZ- 3. «D»» 4sHPRx+3 /(S2«3,1416]}
EBLZEF=GAML ¢EM» (1 .—GAML)
EBTEF*GAMT +EM2 (1 .—GAMT)
COL-EBL##2%H*» 3 /(12 .5 (EBL-EBT«XMULT*=2)} )
COL-CDL/7tH» =3 «HBARs 3 )
COTZEBL*EBT+*Hes 3/ {12, «(EBL-EBT*XMULT*+21})}
CDT-CDT/7({H*23 sHPR ¢ 3}
AF=ZD» 2
C TEMPORARY CHECK SECTION
CALL DATSN( 3vJJ)
IFEJJ-2)6T70¢667670
6567 WRITE{1+175)
175 FORMAT(® SIMPLIFIED PROPERTY CALCULATION®}
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CSLAFS{EF-EM)I/S1¢H®(H+ 2. ¢TI}SEM/{(H*2 2Tl 1.-Q)+H>Q)
CSTZAF*(EF-EMI/S2+(H+ 25327} *EM

C

IDL=D* e k{EF—EM) F {12 c#SY I+ H 23 He 2. *TIxxJeEM/A(]12, %Q*HEx I+ 12 .%{]1 .~-C
1} e{H+2,%T)2%3)

COT=Ds»us (EF—EM)}/ (12%S2)+Q5EMeiH* 25 T) %2 3/12¢11-QlsHex3IsEM/]12
CONTINUE

C TEMPORARY CHECK SECTION ENDS HERE

126
127
128
129
C MMC

130

XSL=CSL/SL

XST=CST/SY

IDL=CDL/DL

Xpr=CDT/DT

WRITE{(1+¢1263CSL ¢SLs XSL

WRITE{1¢1273CSTeSTe XST

WRITE(1+1282CDLDLe XOL

WRITE{(1+129)C0T+DTe XDT

FORMAT(® CSL =%9E18.7+" SL ="+E184.7¢"% RATIO ="+FlO. 43}
FORMAT(® CST =Z°sE14 479" ST ="+E14.7+" RATIO =*vF10. %)}
FORMAT(® CDL ='e¢El8 .7+ DL ="+E18.7+¢° RATIO =*+Fl0.4)
FORMAT(® CDT =*sE14.79* DT =°»E14.79+° RATIO =*eFl10.4&)
= MAY PROCEEDs OR RETURN YO T LOOPy OR RETURN TO STARY
¥YRITE(1+130)

FORMAT(®* IF OKe TYPE Doe IF RESTARTe TYPE loe IF RESTART Gs 2.%)
READ(69101) CHECK

IFUCHECK—1.050¢ 8+ 25

C COMPUTE SHEAR RIGIDITY

50

131
132

133

500

301

501

10

G2 o (GF*D» 2 ¢+GMx (S1/HPR-D* «2))

GGel{GF D3 2eGM*(S2/HPR-D*+ 2} )}

GG/ (S1/HPR«{GF D3 2+ GMe(S2 /HPR-D*%2) )+S2/HPR*{GF D *32+GM=*{S] /HPR~
1D=2 2} 1))

CSSZG/HPR

CSLT-CST*sXMULT

CSTL=CSLT «HPR /HBAR

CDTL-CDT*»XMULT

COLT=-CDYL*{ HPR/HBAR )} &3

WRITE{1+131)

WRITE (14132}

WRITE(1e133)CSSeCSLT+CSTLCOTLCDLTY

FORMAT(® SUMMARY OF THE OTHER RIGIDITIES®)

FORMAT(® €SS CSLTY CSTL CoTL
1 CoLT /)

FORMAT(S5E 17.8)

WRITE(1,130}

READ{(G+¢10 1) CHECK

IF(CHECK—1.3500¢8+25

CONTINUE

WRITE(1+301)

FORMAT(® TYPE O FOR ARBITRARY INPUTel. FOR RESTARYs 2 YO STOP®*}
READ(6¢101)CHECK

IF(CHECK—1.)17001501

STOP

SUBROUTINE POLRT{(XCOF ¢COFsyMsROOTRsROOTI«1ER)
DIMENSION XCOF{1Y+COF{1)+RO0TRC 1} ROOTI(1)
IFIT=0

N=M

IER=O

IFUXCOF{N+1)) 10:25¢10

IFEN) 15915032
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C SEYT ERROR CODE 10 1

15 1ER:=}
20 RETURN
C SET ERROR CODE 710 ¢
25 1ER=H
60 10 20
C SET ERROR CODE 10 2
30 IER=2
60 T0 20
32 IF(N-36) 3523530
35 NX=N
NXXZN+}
N2=1
KJl = Nel
DO 40 L=IeKJl
MTzZKJl-L+ 1]
40 COF{MTINCOF(LL)
C SET INITIAL VALUES
45 X0-.00500101
YO0z 001000201
C ZERO INITIAL VALUE COUNTER
INZD
50 x=x0
C INCREMENT INITIAL VALUES AND COUNTER
X0--10.0+Y0
YO--10.0%X
c SET X AND Y T0O CURRENT VALUE
X=X0
Y=-YO
INZINel
G0 T0 59
55 IFIT:-}
XPRZX
¥YPRZY
c EVALUATE POLYNOMIAL AND DERIVATIVES
59 ICT=0
60 UX-0.0
UY:O-O
vV =0.0
¥Y7-0.0
XT=-1l.0
U=COF {N+1)
IFEUY 650130+65
65 DO 70 I=1+N
L =N-1I+1
XT2=XeXT~-VY» YT
YT2=Xs¥ToYs XY
UZU+COF (L ) eXT2
VZV+COF (L )«¥YT2
FI=1
UXZUX«FI»XT«COF (L )
UYZUY-FIsYT«COF (L )}
XT=XT12
70 YT=-Y12
SUMSOZUX*UX «UY2UY
IF(SUMSQ) 7511075
75 DXz (V=UY-UsUX)/SUMSO
Xz-XeDX '
DYZ—-{UsUY «V =UX]} /SUMSO
YIY+DY
78 IF¢ ABS(DY)+ ABS{DXI-1.0E-3S) 1008080
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STEP ITERATION COUNTER
80 ICT-ICTe«1
IFLICT-500) 60+8%+85
85 IFMLIFIT) 10090300
30 IF{IN-5) 50¢95+95
SEYT ERROR CODE 70 3
95 IERZ=3
60 10 20
100 DO 105 Lz=1eNXX
MTzZKJ1-L+1
TEMP-XCOF {(MT)
XCOFEMTI-COF(L)
105 COF(LY-TEMP
ITEMPCN
NZNX
NXZITEMP
IFLIFITY 120¢55+120
110 IFCIFIT) 115500115
115 XTXPR
YC-YPR
120 1IFIT-O
122 IF( ABSIY/X)-1.0E-04) 13501250125
125 ALPHAZX «X
SUMSQ=XxX +Y =Y
N=N-2
GO YO 1a0
130 X=0.0
NXZNX-1
NXXZNXX~-1
135 Y=0.0
SUMS@=0.0
ALPHAZX
NZN-1
140 COF(2I-COF(2)«ALPHA«COFI(1)
145 DO 150 L=-2¢N
150 COF{L+1)-COF(L+1) Al PHA=COF (LI~SUMSQ*COFEL-11}
155 ROOTII(NZ) Y
ROOTRINZ2)} =X
N2-NZ2 ¢}
IF(SUMSE) 160+165+160
160 Y=—¥
SUMSEez=0.0
GO0 10 155
165 IFE{N) 20020945
END
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C-2
Table C-2 Properties of Aluminum
ALLOY F .o K81 FABRICABILITY
1100, 3003 15-20 WELDABILITY HEAT TREATABILITY
2014, 2024 67 1100, 3003, 5456, 6061  Good 1100, 3003, 5456 Not Hardenable
5456 ) 50 2014  Fair 2014, 2024, 6061
Hardenable
6061 45 2024  Poor 7075, 7178
7075, 7178 75 7075, 7178 No
FORM SIZE, INCHES UNLESS SPECIFIED
FORGINGS MINIMUM MAXTMUM
THICKNESS 0,100 12.0
WIDTH 12,0 40,063, -0.125
LENGTH As specified #0,125 50.0 %1.0
ROLLED, DRAWN ROD BAR
BAR MIN MAX MIN MAX
THICKNESS 0.375 + 0.0015 8.0 + 0.031 0,375 + 0,002 4,0 £ 0,020
WIDTH 0.375 + 0,002 10,0 £ 0,062
LENGTH 12,0 + 0,125 50.0 £ 1.0 12.0 + 0,125 50.0 £ 1.0
SHEET, PLATE SHEET PLATE
MIN MAX MIN X
THICKNESS 0.006 + 0.0015 0.249 + 0,011 0.250 + 0.0025 6.0 + 0,180
WIDTH 12,0 % 0.062 168.,0 + 0.25 12.0 + 0,375 168,0 + 0.75
LENGTH 600.0 + 1.0 600 + 1.0
WIRE MIN MAX
THICKNESS 0.010 + 0,0005 0.375 £ 0.0015
LENGTH As Specified * 0.125 5000 ft + 1.0
EXTRUSIONS(I) MIN MAX
THICKNESS 0.050 + 0,006 7.0 £ 0,081
RADII 0.125
AREA 0.250 60.0
WIDTH 30.0 £ 0,081
LENGTH 500 ft * 100 ft
TUBING, PIPE MIN MAX
THICKNESS (WALL) 0.010 % 0.002 0.500 + 0.020
DIAMETER (0.D.) 0,125 + 0.003 12,0 + 0,025
LENGTH 500,0 + 100.0
D)

Must be grain size controlled for better weldability,

MARTIN MARIETTA CORPORATION
DENVER DIVISION
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c-3
Table C-3 Properties of Titanium
FORM ALLOYS SIZES, INCHES UNLESS SPECIFIED FABRICABILITY
FORGINGS COMM, PURE CONVENTIONAL FORGING (2)
Ti-6AL-4V LARGE SMALL MACHINABLE
Ti-5A2-2.55n THICKNESS TOL. +0.25 -0.03 +0.09 -0,03 |REQUIRES SCALE REMOVAL
OTHERS LENGTH TOL +0.03 0,03 WELDABLE
MIN, -FILLET FORMABLE
RADIUS 1.0 0.75. CHEM, MILLABLE
MIN, WEB THICK 0.62 0.25 HEAT TREATABLE
ROLLED OR RO MIN max  |macurnapre(?
DRAWN BAR THICKNESS (ROUNDS) 0.3125 % 0.005 WELDABLE
THICKNESS (SQUARE, 0.3125 4,50 FORMABLE
HEX) HEAT TREATABLE
THTCKNESS (RECT) 0.200 10,0 |CHEM. MILLABLE
LENGTH 50 ft
SHEET sV MIN MAX SAME AS ROLLED OR
THICKNESS 0,008 + 0,002 0.1875 % 0,014 DRAWN BAR
WIDTH 24.0 + 0.062 100.0  0.125
LENGTH 600.0 + 0.50
PLATE A MIN MAX SAME AS ROLLED OR
THICKNESS 0.1875 + 0.046 3.0 # 0.10 DRAWN BAR
WIDTH 10.0 # 0.125 150.0 * 0.25
600.0 + 0.25
WIRE arn(D THICKNESS  0.009 (MIN. DIAMETER) SAME AS ROLLED OR
LENGTH 500 ft DRAWN BAR
EXTRUSIONS COMM. PURE MIN MAX SAME AS ROLLED OR
Ti-6A4-4V THICKNESS 0.125 1.25 DRAWN BAR, BUT MUST
Ti-6A2-6V-2Sn | FINISH MACHINED 0.060 + 0.005 BE DESCALED
Ti-5A2-2.5Sn LENGTH 40 ft
Ti-8Af-1Mo-1V | FILLET RADIL 0.062
Ti-13V-11Cr-3AZ | LENGTH/THICKNESS 14
TUBING, PIPE COMM. PURE MIN MAX
Ti-6AL-4V WALL THICKNESS 0.004 = 0.004 0.250 % 0.0250| SAME AS ROLLED OR
Ti-5A4-2.5Sn s +0.015 +0.090 |DRAWN BAR
T1-13V-11Ce-3Ag | PTAMETER(0.D.) 0.250 _;"q0n  12.0 47059
Ti-8A4-1Mo-1V
T4-5A4-58n-52Zr
@ Ti-0.2Pd, Ti-5A4-2.5Sn, Ti-7AZ-2Cb-1Ta, Ti-8Af-1Mo-1V, Ti-6Af-4V, and

Unalloyed (Comm. Pure):
Ti-6A%-6V-25n, .

(2) g pproximately 20 (AISI B1112 Steel = 100) .
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C-4
Table C-4 Properties of Nickel
FORM ALLOYS SIZES, INCHES UNLESS SPECIFIED
FORGINGS INCONEL 600, 700, MIN MAX
718 x 750, 901; THICKNESS 0.125 + 0,005 4,00
UDIMET 500, 700; DRAFT ANGLE 2.0 deg 3.0 deg
OTHERS
ROLLED, OR INCONEL 600-702, MIN MAX
DRAWN BAR 718 x 750, 901; THICKNESS (ROUNDS) 0.312 ~ 0,002 3.00 - 0.005
HASTELLOY C, R-235; THICKNESS (HEX,
OTHERS SQUARE, OCT,) 0.312 - 0.002 3,00 - 0.007
LENGTH As Specified Spec. #0.025
+0,125
SHEET ALL ABOVE PLUS MIN MAX
WASPALLOY, RENE 41 THICKNESS 0.008 = 0.002 0.1875 + 0,014
NEMONIC 804, 90; WIDTH 24,0 + 0,062 100.0 + 0,25
OTHERS LENGTH 600.,0 £ 0,50
PLATE ALL ABOVE PLUS MIN MAX
WASPALLOY, RENE 41 THICKNESS 0.1875 + 0,046 3.0 £0.1
NEMONIC 80A, 90; WIDTH 10,0 + 0.25 150.0 + 0,25
OTHERS LENGTH 600.,0 + 0,25
WIRE ALL ABOVE MIN MAX
DIAMETER 0.062 + 0.0007 0.500 %+ 0.0015
LENGTH As Specified As Specified
EXTRUSIONS ALL ABOVE MIN MAX
CIRCUMSCRIBED
CIRCLE 4,50
LENGTH 60 ft
CROSS SECTION  0.50 in.2
THICKNESS 0.156
RADII, CORNER 0,062
RADIT, FILLET 0.250 + 0.062
TUBING, PIPE ALL ABOVE MIN MAX
WALL THICKNESS 0.0015 + 0.00015 0.625 + 0.0625
DIAMETER (0.D.) 0.012 = 0.002 6,00 + 0,005
LENGTH As Specified 100 ft £ 0.25
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